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Abstract

An implicant of a propositional boolean formula is a conjunction of proposi-
tions that entails a the formula. Implicants play an important role for many tasks
in AI such as knowledge compilation, circuit minimization, and diagnosis. There
are many classes of implicants that are of interest including prime, irredundant,
and orthogonal implicants. In general, implicants are hard to compute because the
size of both the intermediate and/or final results can be exponentially large.In
this work we focus on how advances in modern#SAT solvers can be exploited
to effectively compute a complete set oforthogonalimplicants. We develop an
orthogonal implicant compiler and demonstrate its potential through experimental
evaluation. Preliminary results indicate that this approach is effective at generat-
ing the orthogonal implicants of a propositional theory represented in Conjunctive
Normal Form.

1 Introduction

Knowledge compilation plays a crucial role in the field of automated reasoning [7, 9,
19, 29, 30]. When propositional theories are compiled into certain syntactic representa-
tions of a particular language, some intractable queries become polynomial in the size
of the representation. Many target languages have been studied and some of the most
common are the family of various forms ofimplicants. Prime implicants are popular
for circuit minimization problems [6], whileirredundantimplicants are of particular
interest since they are minimal representations of a propositional theory in implicant
form [11]. Orthogonalimplicants provide another compelling language that is efficient
for enumerating all models of the theory. Regardless of type, the number of implicants
required to represent a propositional theory may be exponential in the worst case. Ad-
ditionally, most algorithms for computing the various forms of implicants may require
exponential space, even if the final result is polynomial in size [22].

We propose an algorithm, ODNF-Search, that compiles a propositional theory from
Conjunctive Normal Form (CNF)1 to a set of orthogonal implicants, also referred to
asOrthogonal Disjunctive Normal Form(ODNF). ODNF-Search is based on a well-
known method by Davis, Putnam, Logemann, and Loveland (DPLL) [17]. If run ex-
haustively, DPLL can be used to calculate the number of models a propositional theory
has – a problem referred to as#SAT [28]. Many important problems in computer

1CNF has become somewhat of a standard for automated reasoning systems since many forms of input
can be easily transformed to CNF.
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science can be encoded as SAT problems. As such, there has been tremendous effort
to build efficient SAT and#SAT solvers, the fastest of which are based on DPLL. By
basing our approach on DPLL, an algorithm with a long historyof theoretic and imple-
mentational improvements, we are able to leverage many advances in state-of-the-art
solvers. Such techniques include conflict analysis [32], non-chronological backtrack-
ing [31], pre-processing [18], implicit binary constraintpropagation [34], and compo-
nent caching [28].

The main contribution of our work is a CNF-to-ODNF compiler,c2o, that builds
upon a state-of-the-art#SAT solver, sharpSAT [34]. The extended solver not only
generates the number of solutions, but additionally a set oforthogonal implicants in
ODNF that represents the theory. From a knowledge compilation standpoint, the lan-
guage of orthogonal implicants allows us to answer questions in polynomial time (with
respect to the size of the representation) about consistency, validity, clausal entailment,
and solution distribution, among others [13]. Such information has proven useful in
areas such as belief revision [12] and reliability theory [5]. Approaches with similar
goals to the work presented here includeprimeii [3] andc2d [8], and we compare the
approaches experimentally in Section 4.2 and algorithmically in Section 5.1. We ex-
perimentally validated our work and found that it shows a great deal of promise for the
task of CNF-to-ODNF conversion.

Our modifications to the sharpSAT solver were done in the mostgeneral way to en-
able easy exploitation of future advances in the underlying#SAT-solving technology,
and also to support the generation of related target knowledge compilation languages.
While our approach shows a significant improvement over primeii, it is still outper-
formed in general by the c2d solver by Darwiche et al. [8]. In the future we hope to
incorporate an efficient means of storing the partially constructed ODNF representation
which could potentially speed up our solver by many orders ofmagnitude.

The remainder of the paper is organized as follows. Section 2introduces the back-
ground material and discusses previous literature. In Section 3 we present our new
method for generating the ODNF of a theory. Section 4 describes the implementa-
tional details of c2o and gives experimental results. Finally we provide conclusions
and discussion of possible future work in Section 5.

2 Background

If we have an efficient means to reason with the set of solutions to a propositional
theory, a number of AI tasks can be solved in polynomial time with respect to the
size of our representation. This section provides the theoretical background needed to
describe the ODNF representation and reviews related work in this area of research.

2.1 Basic Definitions

Following [27], we have the following definitions:

Definition 1 (Boolean Variable, Literal) A boolean variableis a variable that can
take on a value of either true or false. We will use the lettersx andv (with subscripts)
to denote variables. Aliteral is either a boolean variable (a positive literal), or a
negated boolean variable (a negative literal). We will use the letterl (with subscripts)
to denote literals.
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Definition 2 (CNF, DNF)
Conjunctive Normal Form (CNF)is a conjunction of disjunctions of literals. Every
propositional theory can be represented in conjunctive normal form. We will refer to a
disjunction of literals as aclause.
Disjunctive Normal Form (DNF) is a disjunction of conjunctions of literals. Every
propositional theory can be represented in disjunctive normal form. We will refer to a
conjunction of literals as aterm.

Definition 3 (SAT) Satisfiability (SAT)is the problem of deciding whether or not a
propositional theory is satisfiable. A propositional theory is satisfiable if there exists
an assignment to all of the variables such that the theory is satisfied.

For a theoryΣ with n variables, written in CNF, an assignmentX ∈ {0, 1}n to
the variables satisfies the theory if it makes at least one literal true in every clause
c ∈ CNF (Σ). For a theoryΣ written in DNF, an assignmentX ∈ {0, 1}n to the
variables satisfies the theory if it makes all of the literalstrue in at least one term
t ∈ DNF (Σ).

The task of finding a satisfying assignment for a theory in DNFis trivial, but com-
piling a theory from CNF to DNF is, at worst, an exponential process generally re-
ferred to as DUALIZATION [23]. When we consider the task of finding the number of
satisfying assignments for a theory represented in DNF, thetask becomes complicated
because multiple terms may represent the same satisfying assignment. The process of
converting an arbitrary DNF into a form that can be used to count the number of assign-
ments is generally referred to as ORTHOGONALIZATION [5] and can be exponential in
the input size as well.

Definition 4 (Model, Partial Assignment) A modelof a propositional theory is a sat-
isfying assignment. It consists of a complete assignmentX ∈ {0, 1}n to the variables
such that the theory is satisfied. Apartial assignmentis an assignment to a subset of
the variables.

Sometimes we will say a partial assignment satisfies a theoryΣ. By this we mean
that the variables which are not assigned can be arbitrarilyset to eithertrue or false,
and the resulting full assignment of the variables will be a model ofΣ.

Definition 5 (#SAT) #SAT refers to the problem of calculating the total number of
models of a propositional theory.

Definition 6 (Entailment) A propositional theoryΣ is said toentail another proposi-
tional theoryΣ′ if every model ofΣ is also a model ofΣ′, written asΣ |= Σ′.

Definition 7 (Implicate, Implicant) A disjunction of literalsc (or clause) is animpli-
cateof Σ iff Σ |= c. A conjunction of literalst is an implicant of Σ iff t |= Σ. When
convenient, and the distinction between implicate and implicant is not ambiguous, we
will refer to the literals in an implicate or implicant as a set (rather than a disjunction
or conjunction respectively). An implicate (implicant) issaid to beprime if no proper
subset of the implicate (implicant) is also an implicate (implicant) of the theory.

Every clause in the CNF representation of a theoryΣ is an implicate ofΣ, and
similarly, every term in the DNF representation of a theoryΣ is an implicant ofΣ.

For a CNF representation of a theory, every implicant mustcover the entire set
of clauses. An implicant covers a clause if it contains a literal that is also part of the
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clause. This requirement exists because if an implicantϕ did not cover a clausec in
the CNF representation of a theoryΣ, then a particular setting of variables would exist
such that all of the literals inc could be falsified andϕ would not be violated. This
impliesϕ 6|= Σ, and henceϕ cannot be an implicant of the theory.

Definition 8 (ODNF) A DNF representation of a theoryΣ is said to beorthogonal
if every pair of terms in the DNF is mutually inconsistent. Inother words, every pair
of terms disagrees on at least one literal. We refer to a DNF with this property as
Orthogonal Disjunctive Normal Form, orODNF.2

Here we provide an example of a propositional theoryΣ in CNF:

CNF (Σ) = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ ¬x4)

The following is one of many possible DNF representations ofthe theoryΣ:

DNF (Σ) = (x2 ∧ x3) ∨ (x3 ∧ ¬x4) ∨ (x1 ∧ x2 ∧ x4) ∨ (x1 ∧ ¬x3 ∧ x4) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x1 ∧ ¬x2 ∧ ¬x4) ∨ (¬x2 ∧ ¬x3 ∧ x4)

Finally, we provide an ODNF representation ofΣ. Note how every pair of impli-
cants disagrees on at least one literal:

ODNF (Σ) = (x2 ∧ x3) ∨ (¬x2 ∧ x3 ∧ ¬x4) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ ¬x3 ∧ x4)

2.2 Knowledge Compilation

Implicants were first identified over half a century ago [24].Prime implicants, in partic-
ular, have been heavily studied because of their ability to concisely represent a propo-
sitional theory; a property that has made them ideal for tasks such as circuit mini-
mization [6]. Historically, prime implicants have received a large amount of attention,
and a number of algorithms have been proposed to compute prime implicants from an
enumeration of all solutions [21, 20, 24]. Similar work has been done to compile the
complete set of prime implicants from an input of CNF [4, 14, 33] – a process referred
to as DUALIZATION [23].

Orthogonal implicants have received less attention, but still provide enticing com-
putational properties. A set of orthogonal implicants, or an ODNF representation, is
closely related to the deterministic decomposable negation normal form (d-DNNF) as
described in [13] which has an important location in the knowledge compilation map
[9]. ODNF is a restricted subset of both d-DNNF and DNF – two languages that are not
from the same lineage in the knowledge compilation map. A subset of the knowledge
compilation map with ODNF included is shown in Figure 1.

In the knowledge compilation map, computational power is inherited from the top
down – in Figure 1 the text outside of the boxes indicates problems that are polynomial
for the given language that are not polynomial for any of its ancestors. The problems
of interest areConsistency,ClausalEntailment,Model Enumeration,Validity, valid
Implicant, ModelCounting, Equality, andSententialEntailment. The languages of
interest are as follows:

2Since every term in ODNF is an implicant, and furthermore everypair of terms in ODNF are mutually
inconsistent, we use the termsorthogonal implicantsthat describe a propositional theory and anODNF
representation of a theory to mean the same thing.
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Figure 1: Knowledge Compilation Map

• Negation Normal Form (NNF): The family of boolean formulas that are built
from the operators∨, ∧, and¬, with the added restriction that all¬ operators are
at the literal level.

• Decomposable Negation Normal Form (DNNF): The family of boolean formulas
that are NNF, but additionally have the property that the formula operands of∧
do not share variables.

• Disjunctive Decomposable Negation Normal Form (d-DNNF): The family of
boolean formulas that are DNNF, but additionally have the property that the for-
mula operands of∨ are inconsistent.

• Disjunctive Normal Form (DNF): As described in Section 2.1.

• Orthogonal Disjunctive Normal Form (ODNF): As described inSection 2.1.

• Prime Implicants (IP): The complete set of prime implicantsfor a theory (as
described in Section 2.1).

Since any two terms in ODNF are orthogonal, and any single term in ODNF does
not contain the same variable twice, ODNF is actually a restricted form of d-DNNF.
Additionally, since ODNF is a restricted form of DNF, it has the property of being
flat – the NNF tree of∨ and∧ operators for an ODNF representation has a height of
precisely two [13].

Being a restricted version of d-DNNF, ODNF shares in all of the computational
advantages that d-DNNF possesses and may contain further computational properties
since the language is flat. The added restriction, however, means that ODNF is a less
parsimonious language than d-DNNF.
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3 Using DPLL for Computing ODNF

In this section, we turn to the problem of computing an ODNF representation from
a CNF representation by exploiting state-of-the-art SAT-solving technology based on
DPLL. More precisely, we exploit#SAT-solving technology – extensions of DPLL to
perform model counting – to generate our ODNF representation. The motivation for
using#SAT-solving techniques follows from the trace of an exhaustive DPLL used for
solving#SAT, which represents a list of orthogonal implicants.

We provide the necessary background on#SAT-solving techniques in Section 3.1
and describe our algorithm in Section 3.2.

3.1 Introduction to #SAT

When a theory is represented in CNF, one of the most well-knownalgorithms to solve
SAT is DPLL. Algorithm 1 is the classic DPLL algorithm that includes unit propaga-
tion.

Algorithm 1 DPLL(CNF formulaΣ): returnstrue if Σ is satisfiable, and otherwise
returnsfalse.

1: Σ := UnitProp(Σ)
2: if Σ does not contain any clausesthen
3: return true

4: else ifΣ contains an empty clausethen
5: return false

6: end if
7: v := choose-variable(Σ)
8: return DPLL(Σ ∪ v) ∨ DPLL(Σ ∪ ¬v)

UnitProp(Σ) refers to unit propagation, an approach used to simplify thesyntactic
CNF representation in such a way that all models are preserved. The premise of unit
propagation follows from the observation that if there is a unit clause in CNF, then all
of the models must satisfy that single literal. We present a slightly modified version of
unit propagation in Algorithm 2:UnitProp′. It has been augmented to return the set
of literals that are propagated. While this information is not essential for solving SAT
(or #SAT), it will be important for the task of finding the ODNF representation.

Moving from the problem of solving SAT to#SAT requires only a slight modifica-
tion of the DPLL procedure. Conceptually, we do not stop oncea satisfying assignment
is found, but continue to exhaustively explore the search space. We will refer to this
slightly modified version of DPLL as#DPLL, presented in Algorithm 3. The num-
ber of solutions represented by a partial assignment that fully satisfies the CNF is2m,
wherem is the number of unassigned variables [1].

There have been a number of improvements made to the DPLL and#DPLL algo-
rithms, and in particular we take advantage of five of the mostimportant which can be
found in the#SAT solver, sharpSAT [34]. For clarity, these techniques toadd extra
functionality do not appear in Algorithm 3.

Pre-Processing

Before the search begins, a pre-processing step is used to quickly check if any variable
setting is entailed by the theory. This is done by testing theeffect of setting a variable
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Algorithm 2 UnitProp′(CNF formulaΣ): returns a modified version ofΣ and the
variablesR that have been set.

1: Q := queue of all unit clauses inΣ
2: R := {}
3: while Q is not emptydo
4: uc := pop the next unit clause fromQ
5: l := literal(uc)
6: // Remove clauses that are satisfied by the literal
7: for all c ∈ Σ s.t. l ∈ c do
8: removec from Σ
9: end for

10: // Remove the opposite literal since it cannot satisfy a clause
11: for all c ∈ Σ s.t.¬l ∈ c do
12: remove¬l from c

13: if c is emptythen
14: return UNSAT , {}
15: end if
16: if c is now a unit clausethen
17: pushc on toQ

18: end if
19: end for
20: // Record the propagated literal.
21: R := R ∪ l

22: end while
23: return Σ, R

Algorithm 3 #DPLL(CNF formulaΣ): returns the number of models ofΣ.
1: Σ := UnitProp(Σ)
2: if Σ does not contain any clausesthen
3: m := # of unassigned variables
4: return 2m

5: else ifΣ contains an empty clausethen
6: return 0
7: end if
8: v := choose-variable(Σ)
9: return #DPLL(Σ ∪ v) + #DPLL(Σ ∪ ¬v)
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to true or false and then applying unit propagation. If the resulting theorycontains
an empty clause (ie. is unsatisfiable), then we can conclude the opposite setting is
entailed. This test is done for every variable before running the#DPLL procedure.

Additionally any unit propagation that can be achieved is carried out before the
solving begins.

Conflict Analysis

Once a conflict is found in the search (ie. the partial assignment causes a clause to be-
come empty), additional analysis is used to determine the precise cause for the conflict
[32]. This is achieved by considering which settings in the partial assignment have led
to the conflict. A number of different approaches to conflict analysis exist [2], but all
produce aconflict clause– a clause added to the theory which, with the help of unit
propagation, helps prevent future search in the same unsatisfiable area.

Non-Chronological Backtracking

Once a conflict is discovered, and a clause learned through conflict analysis, we can
safely backtrack to the most recent decision level that unsets a literal in the conflict
clause – a process known as non-chronological backtracking[31]. Normal backtrack-
ing would only backtrack to the latest decision level, but depending on the conflict
analysis we may be able to safely backtrack further.

Implicit Binary Constraint Propagation

Similar to the pre-processing step described earlier, Implicit Binary Constraint Prop-
agation (IBCP) is a method of testing whether or not certain variable settings lead to
an unsatisfiable theory [34]. IBCP is employed during the search on a subset of the
variables which have yet to be assigned. The determination of which variables should
be included in the subset is a matter of ongoing research [16], but once tested if any are
found to cause the theory to be unsatisfiable the opposite setting is added, as if a unit
clause forcing the variable in that direction had already existed.

This form of inference is equivalent to enforcing SingletonArc Consistency [26]
on a subset of the variables which are considered important.

Component Caching

Arguably one of the most important contributions to#SAT-solving is component caching
[28]. During the execution of#DPLL, when the theory represented in CNF can be par-
titioned into disjoint sets of clauses, such that no two setsshare a variable, each set of
clauses can be considered independently and the solutions combined (we refer to a
disjoint set of clauses as acomponent). Additionally, certain components may appear
more than once during the solving process so a component may be cached along with
the number of solutions that it contains. When the same component is encountered in
the future, the value is retrieved from the cache rather thansolving the#SAT problem
recursively on the component.

3.2 CNF-to-ODNF

The main difference between#DPLL and our approach is that we record and return
sets of orthogonal implicants.#DPLL, on the other hand, only returns the model count.
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Before we present the main algorithm, we start by providing some basic procedures /
definitions that we will use to describe the algorithm:

• term(l1, l2, · · · ): Represents the terml1 ∧ l2 ∧ · · · .

• literals(ϕ): The set of literals that are contained in termϕ.

• components(Σ): Calculates the set of disjoint components of a theoryΣ.3

• lx,¬lx: Respectively, the positive and negative literals corresponding to the vari-
ablex.

In order to generate an ODNF fully describing a theoryΣ, we make use of the fact
that every model ofΣ must contain eitherx = True or x = False for any given
variablex. Like the#DPLL algorithm, we partitionΣ into two theories corresponding
to whenx = True and whenx = False, and recursively determine the ODNF of
each theory. Recombining the results simply involves the union of the terms found in
each theory: this is because the pair of theories is mutuallyinconsistent with respect to
variablex, and therefore every term from one will be orthogonal to every term of the
other.

One important operation that we will require is the term crossproduct operator,⊗.
The operator⊗ works on two sets of terms and results in the combination of all pairs
of terms. Algorithm 4 describes the procedure that realizesthe crossproduct operator.

Algorithm 4 S1 ⊗ S2: whenS1 andS2 are sets of terms, returns all possible combi-
nations of terms between the two sets.

1: S = {}
2: for all ϕ1 ∈ S1 do
3: for all ϕ2 ∈ S2 do
4: if ϕ1 andϕ2 are consistentthen
5: S := S ∪ term(literals(ϕ1) ∪ literals(ϕ2))
6: end if
7: end for
8: end for
9: return S

When we use the⊗ operator there are two special cases worth noting. First, ifone
of the operands is the empty set then the result of the operator will be the empty set as
well. Second, if one of the operands is a set of just one term, then the operator simply
combines that term with every term in the other set.

The way we partition a theoryΣ into two theories is by first selecting a variable
x to partition on, and then producing the two theories,Σ ∪ lx andΣ ∪ ¬lx. After
recursively solving for the ODNF ofΣ∪ lx andΣ∪¬lx, we compute the complete set
of orthogonal implicants by taking their union.

One additional enhancement is to perform unit propagation and record a setV of all
the variables that were assigned. Once we are about to returnthe union of orthogonal
implicants fromΣ ∪ lx andΣ ∪ ¬lx, we mergeV with the set of implicants (see line 9
in Alg. 5).

It should be noted that ifΣ contains no clauses, then the set of orthogonal implicants
describingΣ is simply the empty set (this becomes our base case). We now have all the

3Two components are disjoint if they do not share a variable.
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pieces needed to describe the recursive procedure for generating the ODNF of a theory
given in CNF. This is shown as Algorithm 5.

Algorithm 5 Simple-ODNF-Search(CNF formulaΣ): returns a set of orthogonal im-
plicants (ODNF) that is equivalent toΣ.

1: Σ, V := UnitProp(Σ)
2: if Σ contains an empty clausethen
3: return {}
4: end if
5: v := choose-variable(Σ)
6: St := Simple-ODNF-Search(Σ ∪ lv)
7: Sf := Simple-ODNF-Search(Σ ∪ ¬lv)
8: if V 6= ∅ then
9: return (St ∪ Sf ) ⊗ {term(V )}

10: else
11: return (St ∪ Sf )
12: end if

Clearly, there is a strong similarity between Algorithms 5 and 3. #DPLL has the
property that every model is captured by one (and only one) leaf node in the search
tree, but instead of recording how many solutions exist under a partial assignment, we
record an orthogonal representation that fully describes the theory that results from a
partial assignment.

Just as component analysis has been shown to provide significant improvements
in solving #SAT [28], we can leverage the same technique in the task of compiling
ODNF. To do this, we take advantage of the following lemma:

Lemma 1 If Σ is a disjoint theory made up of independent componentsΣ1,Σ2, · · · ,Σk,
then we have:

ODNF (Σ) = ODNF (Σ1) ⊗ ODNF (Σ2) ⊗ · · · ⊗ ODNF (Σk)

To see why this is the case, it is easier to consider only two disjoint theories,Σ1

andΣ2, and take advantage of the fact that the⊗ operator is associative (this follows
from the definition of⊗). The ODNF of a component completely describes the set of
variable assignments that satisfy that component. SinceΣ1 andΣ2 are disjoint (with
respect to variables), an assignment toΣ1 ∪ Σ2 must be an assignment to bothΣ1 and
Σ2 individually. Taking the⊗ operator thus provides a set of orthogonal implicants
that fully describesΣ1 ∪ Σ2.

Treating disjoint components separately allows us to divide the problem during
compilation. Algorithm 6 demonstrates this improvement over Algorithm 5. On line 7
we treat each component individually, and combine the results together on lines 10-14.

As mentioned in Section 3.1, many other improvements from the #SAT literature
can be incorporated as well, and we discuss the implementational details in Section
4.1.

4 Implementation and Experimental Evaluation

We implemented our algorithm as an extension to sharpSAT; a C++ implementation of
the#DPLL algorithm. In this section, we describe the details of our implementation,
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Algorithm 6 ODNF-Search(CNF formulaΣ): returns a set of orthogonal implicants
(ODNF) that is equivalent toΣ.

1: Σ, V := UnitProp(Σ)
2: if Σ contains an empty clausethen
3: return {}
4: end if
5: v := choose-variable(Σ)
6: S := {}
7: for all componentφ ∈ components(Σ) do
8: St := ODNF-Search (φ ∪ lv)
9: Sf := ODNF-Search (φ ∪ ¬lv)

10: if first time in the loopthen
11: S := (St ∪ Sf )
12: else
13: S := S ⊗ (St ∪ Sf )
14: end if
15: end for
16: if V 6= ∅ then
17: return S ⊗ {term(V )}
18: else
19: return S

20: end if

followed by the experimental evaluation we performed to measure the effectiveness of
our approach.

4.1 Implementation Details

In what follows, we describe five key components of c2o.

Pre-Processing

The pre-processing step of sharpSAT involves the potentialdiscovery of variables that
can take on only a single setting (referred to as a backbone variable [15]). During this
phase, we keep track of every variable that is discovered andas a post-processing step
we add all of these variable settings to each orthogonal implicant individually.

Conflict Analysis

Conflict analysis involves the addition of new clauses to thetheory that prevent the
solver from exploring the same (failed) search space again.Additional effort to main-
tain the orthogonal implicants is not required because of the following property:

Proposition 1 If ϕ is an implicant of the theoryΣ (ie. ϕ |= Σ), andφ is an implicate
of Σ (ie. Σ |= φ), then we can concludeϕ |= φ.

This follows from the definition of|= since every model ofϕ must also be a model
of Σ, which in turn must also be a model ofφ. Therefore, an implicant of a propo-
sitional theory must coverany implicate of the theory; including those added due to
conflict analysis.
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Non-Chronological Backtracking

Non-chronological backtracking unsets a number of variables based on a conflict found
during search. Backtracking away from a sub-space that has undiscovered solutions
would invalidate the final solution count. Because of this, sharpSAT is particular in how
far it backtracks once a conflict is found. This guarantees that our approach does not
miss orthogonal implicants during the execution of non-chronological backtracking.
The modifications required for this portion of the sharpSAT solver involved properly
clearing out the orthogonal implicants that have become invalidated (ie. when one of
the components is unsatisfiable in lines 7-14 of Algorithm 6).

Implicit Binary Constraint Propagation (IBCP)

The implementation of IBCP in sharpSAT allows us to treat anyvariable setting due to
IBCP as a propagated literal. This is handled as described inAlgorithm 6.

Component Caching

In sharpSAT, only the number of solutions is cached with a component. This was
extended so that the set of implicants associated with a component was stored in a
separate cache. We stored a pointer to this set of implicantswith the cached component
so when the component is encountered again, we would not needto recalculate the set
of implicants associated with it.

When the component cache uses too much memory (a run-time setting for sharp-
SAT), the component cache is purged of old components. When this occurs, we also
delete the set of implicants associated with that component. If the same component is
encountered later in the search, both the solution count andset of orthogonal implicants
will be re-computed.

The data structure used to store a set of implicants is a naiveimplementation and
this led to the bottleneck of our CNF-to-ODNF converter. Improving this is a point of
future work we intend to pursue.

4.2 Experimental Results

To evaluate our algorithm, we investigated three separate issues:

1. How does our implementation compare with other approaches that perform the
same task?

2. Which#SAT technologies have an impact on the efficiency of finding orthogo-
nal implicants?

3. Is there correlation between c2o and sharpSAT run-time performance?

Experiments were conducted on a Linux desktop with a Dual Core 2.13GHz pro-
cessor and 2GB of memory. The propositional theories used were either from SATLIB4

or generated as random 3SAT problems at a 4.25 clause-to-variable ratio.
During the execution of c2o we limited the memory allowed to 1.5GB. c2o was im-

plemented as a modified version of sharpSAT,5 and is written in C++ and compiled with

4http://www.satlib.org/
5http://www2.informatik.hu-berlin.de/ ˜ thurley/sharpSAT/index.html
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GNU GCC. Primeii is written in common lisp, and the interpreter used was SBCL.6 c2d
is available for download as a binary.7

Algorithm Comparison

In order to see how our solver compares with other approachesthat convert CNF-to-
ODNF, we tested it on a range of inputs with two other programs: primeii [3] andc2d
[8]. Further discussion on primeii and c2d is provided in Section 5.1. All solvers were
run with their default settings and a twenty minute time limit.

As an initial step, primeii uses a variation of the DUALIZATION algorithm to com-
pute a set of prime implicants. The set of prime implicants does not include all possible
prime implicants, but enough to fully describe the theory. The software then uses a
graph-based approach to convert the set of prime implicantsinto ODNF.

The c2d software uses a DPLL-based search and records the trace of the search
space to compile a d-DNNF representation. The ODNF representation can be extracted
from the d-DNNF by enumerating all possible paths in the d-DNNF structure. The
complexity of this final process is linear in the size of the ODNF representation.

The problems used for this experiment were random 3-SAT instances with a 4.25
clause-to-variable ratio. The number of variables considered was 100, 150, 175, and
200. Twenty problems from each size class were generated, and the run-times for each
of the three solvers recorded.

The means and standard deviations of the solvers’ run-timesare shown in Figure 2
– the error bars indicate± one standard deviation of the mean run-time. Primeii was
unable to solve any problems with more than 100 variables in atwenty minute time-
out. Additionally, at sizes 175 and 200, c2o ran out of memoryon two of the twenty
instances (their values are removed from the average / standard deviation calculations).

As an initial step, c2d performs a decomposition of the clausal graph that causes
a delay before beginning to solve the problem. This led to c2ooutperforming c2d on
instances with 175 variables, but in general c2d scales better with problem size, mainly
due to the heavy memory usage by c2o. Despite this drawback with c2o, we found
the difference in run-time between c2o and c2d to not be statistically significant at
these problem sizes. A pairwise t-test was used to verify this, and the results for each
problem size are provided in Table 1. For all problem sizes, the statistical comparison
was not significant atp ≤ 0.005.

Problem Size Mean Difference (seconds)
100 0.118
150 1.384
175 -0.461
200 8.420

Table 1: Pairwise t-test Comparison – None of the differences are significant atp ≤
0.005

6http://www.sbcl.org/
7http://reasoning.cs.ucla.edu/c2d/
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Figure 2: Mean Run-times

Parameter Effect

In order to show the effect of using different#SAT-solving technologies in our solver,
we performed an analysis of variance (ANOVA) using the R statistical package [25].
For a particular instance, we ran c2o with every possible parameter setting; in total 32
different variations. The data sets used were the uniform random instance problems
and flat graph colouring problems from SATLIB (the number of problems in each data
set is 94 and 50 respectively).

The results for the uniform random problem set and flatgraph problem set are sum-
marized in Table 2. The value indicates the probability thatusing the associated pa-
rameters does not affect the run-time – the lower the probability, the more significant
changing the parameter settings affects the running time. Results that are very signif-
icant (≤ 0.001) are indicated in bold, and results that are mildly significant (≤ 0.05)
are indicated in italics. We only include the parameter settings that were significant for
either data set. Abbreviations used for the five parameter settings are pre-processing
(pp), conflict analysis (ca), non-chronological backtracking (ncb), component caching
(cc), and implicit binary constraint propagation (ibcp).

For both problem sets we found component caching to play a significantnegative
role. Upon further investigation, this was found to be caused by the overhead required
for maintaining the cache, which was seldom used. In many of the instances for both
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Factor(s) Uniform Pr(>F) Flatgraph Pr(>F)
ca 2.220 × 10

−13
1 .525 × 10

−2

cc 1.414 × 10
−10 < 2.000 × 10

−16

ibcp 2.530 × 10
−7 2.374×10−1

ca:cc 2.936 × 10
−4 4.531×10−1

Table 2: ANOVA Results for Uniform Random Instance and Flat Graph Colouring
Problem Sets

Factor Uniform Flatgraph
pp − −
ca × −
ncb − −
cc × ×
ibcp

√ −

Table 3: Tukey HSD Results: ‘
√

’ and ‘×’ indicate that using the technology had a
positive and negative impact (respectively), while ‘−’ indicates there was no significant
difference in performance.

data sets, there were only a small number of successful cachehits – rendering this fea-
ture harmful for usage when generating orthogonal implicants. A more formal analysis
of parameter impact was achieved by conducting a Tukey HSD test for each individual
setting. The result of this test is presented in Table 3. All tests were performed at a
significance level ofp ≤ 0.005.

For the uniform random problem set, we found that the use of conflict analysis hurt
the performance as well, and the combination of both conflictanalysis and component
caching was significant in negatively affecting the run-time. Implicit binary constraint
propagation, on the other hand, had a positive impact on the solver’s efficiency for
uniform random problems.

In contrast to the uniform random problems, we found that conflict analysis pro-
vided a minor improvement for the solvers’ efficiency on the flat graph colouring prob-
lems. The Tukey HSD test did not show a significant result atp ≤ 0.005, but it was
close withp = 0.0152.

Correlation to sharpSAT

We would expect improvements to the task of#SAT to also help in our approach to
the task of CNF-to-ODNF conversion. One indicator of this would be a correlation
between the power of the unmodified sharpSAT and c2o with respect to different pa-
rameter settings. For a given instance we measured the run-time on each of the 32
different parameter settings for both sharpSAT and c2o. A correlation coefficient,r,
was then calculated from the run-times of each solver.

Table 4 summarizes the mean and standard deviation of allr-values (one for each
instance in the data set). The data sets used were the same as the previous experiment.

For the uniform random problem set, we generally found a positive correlation
when comparing the run-times. A large majority of instancesin the uniform random
data set were very strongly correlated (r-value of at least 0.9). We found that those
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statistic\ data set uniform flat-graph
Mean Correlation 0.606 -0.004
STD Correlation 0.357 0.180

Table 4: Correlation Results: Values indicate the mean and standard deviation ofr-
values which are computed on a per-instance basis.

with a smaller correlation coefficient tended to have a very small standard deviation of
run-time over all parameter settings. We suspect that with such a small deviation, the
significance of parameter settings on the run-time is arbitrary and would lead to a low
correlation coefficient.

To demonstrate at a high level how the two solvers compare on the uniform ran-
dom problem set, we plot the run-times for every problem instance on every parameter
setting in Figure 3. A portion of the data points are magnifiedto show the general
correlation between the run-times of the two solvers, and a line of y = x is included
for reference.

Figure 3: Run-time Comparison on Uniform Random Problems

For the flat graph colouring data set a meaningful comparisonwas not possible. The
reason the correlation given in Table 4 is so low is due to the extremely low deviation on
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sharpSAT’s performance with this data set. This floor effectis caused by the extremely
small run-time needed for sharpSAT to solve the problems. Todemonstrate this, we
ran sharpSAT on the flat graph data set with all 32 parameter settings giving us a set of
run-timesR1, and then repeated the experiment to give us a set of run-times R2. We
would expect to see a correlation betweenR1 andR2, but we find that, with anr-value
of 0.051, there is very little correlation. The differencesin run-times of sharpSAT are
dominated by the noise caused by individual executions of the software. In contrast,
checking the correlation between two successive runs of c2oon the flat graph problem
set yields anr-value of 0.999.

4.3 Discussion

We have established a correlation between the efficiency of c2o and sharpSAT over all
parameter settings, but we have also shown the negative impact component caching
has on c2o. This is somewhat surprising since the use of component caching has been
credited for much of the success of modern#SAT solvers.

One initial distinction is that the success attributed to component caching in#SAT
solvers typically includes the use of disjoint component analysis – the process of ana-
lyzing each component individually and combining the solutions. This approach is an
aspect of sharpSAT that cannot be disabled. Therefore, regardless of parameter setting,
c2o will take advantage of disjoint component analysis.

Under the assumption that disjoint component analysis is used, component caching
will have a far lower positive impact on the efficiency of a#SAT solver. During the ex-
ecution on some classes of problems, repeated components may occur very few times,
or even never. In these situations, component caching only hinders the efficiency, and
in general the problem sets considered in our experimental evaluation fell under this
category. In the case of c2o, this negative impact is magnified due to the overhead
involved in maintaining the orthogonal implicants while using the component cache.

To verify this was the cause of component caching’s behaviour, we performed an
analysis of variance on the unmodified sharpSAT software. Wefound that similar to
c2o, component caching had a negative, though statistically insignificant, impact on
the solver’s efficiency.

5 Discussion and Future Work

In this paper we proposed an algorithm, ODNF-Search, that compiles a propositional
theory from CNF to a set of orthogonal implicants. Our implementation of the ODNF-
Search algorithm, c2o, is able to compile a set of orthogonalimplicants by leveraging
advances in modern#SAT-Solver technology.

We compared c2o with two other solvers that have the ability to compute orthog-
onal implicants: primeii and c2d. c2o clearly outperformedprimeii, demonstrating its
ability to solve much larger problems, and when compared to c2d we found there to
be little statistical difference. However, we expect that c2d would out-perform c2o on
problems with more than 200 variables.

We demonstrated the intrinsic properties of our solver by analyzing precisely which
#SAT technologies contribute to the performance of c2o. We found that component
caching significantly hindered the solver’s performance. This was in part due to the
limited amount of cache hits during the execution of c2o on the problems considered,
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but mainly due to the overhead involved in storing partiallyconstructed orthogonal im-
plicants. Conflict analysis had both a positive and negativeimpact on the performance
of c2o depending on the problem type, and for randomly generated problems implicit
binary constraint propagation proved beneficial.

Finally, we attempted to determine whether or not the performance of c2o coincides
with the performance of sharpSAT on similar problems. Results give a strong indica-
tion that new advances in#SAT-solving technology – specifically improvements to the
sharpSAT software – will boost the efficiency of c2o.

5.1 Related Work

In Section 4, we compared the performance of c2o with two other pieces of software,
primeii, and c2d. Here we elaborate on the differences between the approaches under-
lying these different software systems.

Based on the classic DUALIZE algorithm [23], Bittencourt proposed a method,
calledprimeii, for computing a form similar to ODNF [3]. The first step of primeii
is to produce a set of prime implicants – the set generated does not include every prime
implicant, but enough to fully describe the theory. This is achieved by performing an
A* search through the space of partial implicants where eachstate in the search space
corresponds to a partial assignment of the variables. Neighbouring states correspond
to the literals that can be added to the partial assignment such that more clauses are
covered by the partial implicant – recall that a partial assignment satisfies a theory in
CNF when every clause has a literal corresponding to a variable setting. Final states in
the search correspond to prime implicants of the theory.

Primeii works by maintaining a subset of the prime implicants that are sufficient to
describe the theory. Once a complete set of prime implicantsis generated, the prime im-
plicants are compiled into an orthogonal form by repeated application of the inclusion-
exclusion principle [10] – implicants that describe an overlapping set of models are
broken up to become orthogonal. The motivation for Bittencourt’s approach is to pro-
vide exact information about the distribution of solutionsin order to aid in the process
of Belief Revision. The key difference of our approach is that we do not compute an
intermediate form of prime implicants prior to generating an orthogonal representation.

Recent work by Darwiche et al. [8] points out how a similar approach to the one
presented here can be used to compile a theory into d-DNNF using a solver that they
have constructed calledc2d. c2d records the search trace of the exhaustive DPLL
algorithm, and structures the trace into d-DNNF form. However, before the DPLL pro-
cedure begins, c2d pre-computes sets of variables that cause the theory to decompose
into disjoint components. This information is stored in a structure referred to as ad-
tree, and it is used to guide the variable ordering heuristic in DPLL as well as indicate
when the theory has become disjoint.

The decisions made by the DPLL algorithm correspond to or-nodes in the d-DNNF
representation, and the d-tree corresponds to and-nodes inthe d-DNNF representation.
Additionally, any literals found through inference are also recorded as and-nodes in the
d-DNNF representation. There are two key differences between c2o and c2d. Firstly,
the ODNF, which our method explicitly generates, is implicitly represented by the d-
DNNF that is generated by c2d. Second, we take advantage of sharpSAT’s dynamic
component analysis technology to compute disjoint components on-the-fly rather than
pre-computing where the decomposition will occur.

Related to the task of compiling ODNF is the minimization of disjunctive normal
forms. In this case the input is already in DNF, and the task isto find an equivalent
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DNF which has as few terms as possible. Minimization involves removing redundant
implicants and finding a representation that covers as many solutions as possible with
little overlap between terms. The task of minimizing the DNFform from an ODNF
expression, or total enumeration of satisfying assignments, is typically referred to as
two-level circuit minimization [6]. Approaches include the ESPRESSO[21] and the
Quine-McCluskey [24] algorithms. While the work presented in this paper does not
perform two-level circuit minimization, it can be used to pre-process a theory described
in CNF into a form that logic minimization algorithms can handle.

5.2 Future Work

There are a number of different areas that we would like to investigate further. Here
we outline some of the more interesting ones.

Clause Learning

At a high level we have investigated the impact that conflict analysis has on c2o and
shown that it has a negative impact on the solvers efficiency.However, the question
remains as to whether or not certain types of clause learningcan provide a benefit for
the task of orthogonal implicant generation.

There are a number of clause learning schemes available [2],and there is a possibil-
ity that the chosen scheme could have an impact on the size of ODNF representations
that would be generated. Intuitively, clauses that cause the search space to be as shallow
as possible should lead to smaller implicants. This could alter the trade-offs already
known to exist between the different clause learning schemes.

Prime Implicants

Instead of recursively generating orthogonal implicants,one could imagine returning a
set of prime implicants. In Algorithm 6 we could alter lines 17 and 19 to convert the
implicants into prime forms before returning them. This canbe achieved by removing
literals from each individual implicant until they minimally cover the theory at that step
in the algorithm.

This approach would likely cause the solver to take more timewhen generating im-
plicants, but the final form would be strictly smaller than ODNF. For tasks that require
only a set of prime implicants, this form of compilation may generate a representation
much smaller than ODNF. Note, however, that the prime implicants generated would
not be the set of all prime implicants of the theory.

Compact Representation

A potential inefficiency to our current approach is that we cache partial solutions ex-
plicitly rather than in a compact symbolic form, resulting in a large amount of unneces-
sary memory use. As an alternative, we would like to investigate storing partial results
in symbolic form and reconstructing solutions at the end of the process.

More specifically, instead of recording all of the literals that are set during the
#DPLL process, we can simply store the decisions made along the way. The final
representation would be in d-DNNF, but wouldnot represent the theory. However,
along with the knowledge of what inference techniques were used (unit propagation,
IBCP, etc.), we would be able to reconstruct a d-DNNF similarto what c2d generates,
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or explicitly list a set of orthogonal implicants similar towhat c2o generates. This
approach is advantageous because compiling to the full d-DNNF or ODNF could be
done in a post-processing step.

Only considering the decision variables would generate a representation strictly
smaller than the d-DNNF generated by c2d. Intuitively, thisis because the reduced d-
DNNF generated would be an induced subgraph of the d-DNNF generated by c2d. The
proposed approach would also substantially speed up c2o by requiring far less overhead
to maintain the representation during execution. The final d-DNNF would represent a
tree of backdoor sets [15], where every root-to-leaf path would represent a backdoor
set with respect to the inference used. Enumerating all of the orthogonal implicants
can be achieved by enumerating all root-to-leaf paths that end at a positive leaf, and
performing the indicated inference on the backdoor set to find out which literals must
be additionally in the orthogonal implicant.

Flat d-DNNF Computational Power

Finally, as noted in Section 2.2, ODNF is a flat form of the d-DNNF language. From
a knowledge compilation perspective, there may be certain types of queries that are
easier to solve in this flat form. We hope to investigate whether or not any existing
problems are easily solved by a knowledge base represented in ODNF form.
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