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Abstract

An implicant of a propositional boolean formula is a conjunction of propos
tions that entails a the formula. Implicants play an important role for markg tas
in Al such as knowledge compilation, circuit minimization, and diagnosieréh
are many classes of implicants that are of interest including prime, mdzoh,
and orthogonal implicants. In general, implicants are hard to compugibecthe
size of both the intermediate and/or final results can be exponentially lange.
this work we focus on how advances in mode#SAT solvers can be exploited
to effectively compute a complete set afthogonalimplicants. We develop an
orthogonal implicant compiler and demonstrate its potential through iexeetal
evaluation. Preliminary results indicate that this approach is effectiveradrgt-
ing the orthogonal implicants of a propositional theory represented iju@ctive
Normal Form.

1 Introduction

Knowledge compilation plays a crucial role in the field of@uated reasoning [7, 9,
19, 29, 30]. When propositional theories are compiled inttage syntactic representa-
tions of a particular language, some intractable queriesrine polynomial in the size
of the representation. Many target languages have beeredtadd some of the most
common are the family of various forms whplicants Prime implicants are popular
for circuit minimization problems [6], whilé&rredundantimplicants are of particular
interest since they are minimal representations of a pitipoal theory in implicant
form [11]. Orthogonalimplicants provide another compelling language that isieffit
for enumerating all models of the theory. Regardless of t{penumber of implicants
required to represent a propositional theory may be exg@iémthe worst case. Ad-
ditionally, most algorithms for computing the various faref implicants may require
exponential space, even if the final result is polynomiaize §22].

We propose an algorithm, ODNF-Search, that compiles a gitipoal theory from
Conjunctive Normal Form (CNE)to a set of orthogonal implicants, also referred to
asOrthogonal Disjunctive Normal ForlODNF). ODNF-Search is based on a well-
known method by Davis, Putnam, Logemann, and Loveland (DFLET]. If run ex-
haustively, DPLL can be used to calculate the number of nscalpropositional theory
has — a problem referred to gSAT [28]. Many important problems in computer

1CNF has become somewhat of a standard for automated reasostegsysince many forms of input
can be easily transformed to CNF.



science can be encoded as SAT problems. As such, there hasr&eendous effort
to build efficient SAT and#£SAT solvers, the fastest of which are based on DPLL. By
basing our approach on DPLL, an algorithm with a long histdrheoretic and imple-
mentational improvements, we are able to leverage manynadsan state-of-the-art
solvers. Such techniques include conflict analysis [32h-claronological backtrack-
ing [31], pre-processing [18], implicit binary constraprbopagation [34], and compo-
nent caching [28].

The main contribution of our work is a CNF-to-ODNF compile2o, that builds
upon a state-of-the-ag SAT solver, sharpSAT [34]. The extended solver not only
generates the number of solutions, but additionally a serthiogonal implicants in
ODNF that represents the theory. From a knowledge commilatiandpoint, the lan-
guage of orthogonal implicants allows us to answer quesfiopolynomial time (with
respect to the size of the representation) about consisteadity, clausal entailment,
and solution distribution, among others [13]. Such infatiovahas proven useful in
areas such as belief revision [12] and reliability theorly [Bpproaches with similar
goals to the work presented here inclyatémeii [3] and c2d [8], and we compare the
approaches experimentally in Section 4.2 and algorithityid@a Section 5.1. We ex-
perimentally validated our work and found that it shows agdeal of promise for the
task of CNF-to-ODNF conversion.

Our modifications to the sharpSAT solver were done in the g@séral way to en-
able easy exploitation of future advances in the underly#&AT-solving technology,
and also to support the generation of related target kn@eledmpilation languages.
While our approach shows a significant improvement over pijritds still outper-
formed in general by the c2d solver by Darwiche et al. [8]. Ha future we hope to
incorporate an efficient means of storing the partially tarcéed ODNF representation
which could potentially speed up our solver by many ordemmagnitude.

The remainder of the paper is organized as follows. Sectiotr@uces the back-
ground material and discusses previous literature. Ini@e& we present our new
method for generating the ODNF of a theory. Section 4 dessrtbhe implementa-
tional details of c2o and gives experimental results. Bmak provide conclusions
and discussion of possible future work in Section 5.

2 Background

If we have an efficient means to reason with the set of solsttona propositional
theory, a number of Al tasks can be solved in polynomial tinith wespect to the
size of our representation. This section provides the #teal background needed to
describe the ODNF representation and reviews related wdtkis area of research.

2.1 Basic Definitions

Following [27], we have the following definitions:

Definition 1 (Boolean Variable, Literal) A boolean variableis a variable that can
take on a value of either true or false. We will use the letieesmd v (with subscripts)
to denote variables. Aiteral is either a boolean variable (a positive literal), or a
negated boolean variable (a negative literal). We will use fetter! (with subscripts)
to denote literals.



Definition 2 (CNF, DNF)

Conjunctive Normal Form (CNF)is a conjunction of disjunctions of literals. Every
propositional theory can be represented in conjunctivenmarform. We will refer to a
disjunction of literals as @lause

Disjunctive Normal Form (DNF)is a disjunction of conjunctions of literals. Every
propositional theory can be represented in disjunctivenmairform. We will refer to a
conjunction of literals as &rm.

Definition 3 (SAT) Satisfiability (SAT)is the problem of deciding whether or not a
propositional theory is satisfiable. A propositional thgas satisfiable if there exists
an assignment to all of the variables such that the theorgiisfed.

For a theory® with n variables, written in CNF, an assignmeXit € {0,1}" to
the variables satisfies the theory if it makes at least oeealittrue in every clause
¢ € CNF(X). For a theoryX written in DNF, an assignment € {0,1}" to the
variables satisfies the theory if it makes all of the literaige in at least one term
t€ DNF(X).

The task of finding a satisfying assignment for a theory in D&ffivial, but com-
piling a theory from CNF to DNF is, at worst, an exponentiabqess generally re-
ferred to as WALIZATION [23]. When we consider the task of finding the number of
satisfying assignments for a theory represented in DNRaslebecomes complicated
because multiple terms may represent the same satisfysignasent. The process of
converting an arbitrary DNF into a form that can be used totthe number of assign-
ments is generally referred to aR@HOGONALIZATION [5] and can be exponential in
the input size as well.

Definition 4 (Model, Partial Assignment) A modelof a propositional theory is a sat-
isfying assignment. It consists of a complete assignd¥eat {0, 1}" to the variables
such that the theory is satisfied.partial assignments an assignment to a subset of
the variables.

Sometimes we will say a partial assignment satisfies a theéoBy this we mean
that the variables which are not assigned can be arbitrseilto eithettrue or falsg
and the resulting full assignment of the variables will beadei of X..

Definition 5 (#SAT) #SAT refers to the problem of calculating the total number of
models of a propositional theory.

Definition 6 (Entailment) A propositional theory is said toentail another proposi-
tional theoryY' if every model ofY. is also a model ofY’, written asX = X',

Definition 7 (Implicate, Implicant) A disjunction of literals: (or clause) is armpli-
cateof X iff 3 |= ¢. A conjunction of literalg is animplicant of X iff ¢ = X. When
convenient, and the distinction between implicate andigapt is not ambiguous, we
will refer to the literals in an implicate or implicant as atsgather than a disjunction
or conjunction respectively). An implicate (implicant)said to beprime if no proper
subset of the implicate (implicant) is also an implicategivent) of the theory.

Every clause in the CNF representation of a theBris an implicate of%, and
similarly, every term in the DNF representation of a theBris an implicant of%.

For a CNF representation of a theory, every implicant nuaster the entire set
of clauses. An implicant covers a clause if it contains adit¢éhat is also part of the



clause. This requirement exists because if an impligadid not cover a clause in
the CNF representation of a thedty then a particular setting of variables would exist
such that all of the literals ia could be falsified ang> would not be violated. This
impliesp [~ ¥, and hence cannot be an implicant of the theory.

Definition 8 (ODNF) A DNF representation of a theory is said to beorthogonal
if every pair of terms in the DNF is mutually inconsistent.other words, every pair
of terms disagrees on at least one literal. We refer to a DN#h whis property as
Orthogonal Disjunctive Normal Form, ddDNF.?

Here we provide an example of a propositional thedriy CNF:
ONF(E) = (Il V —T9 V 1’3) A (_L’El V I3 V I4) A\ (1’2 \Y T3 \Y _'I4)
The following is one of many possible DNF representationtheftheoryX::

DNF(E) = (Ig N ;133) \Y (xg N —|£C4) V (Il N xo N\ I4) \Y (171 N —x3 A £E4) V
(_\331 N o9 A _‘$3) \Y (—\.131 VASE WA _\334) V (—‘1‘2 N —x3 A 3;‘4)

Finally, we provide an ODNF representationf Note how every pair of impli-
cants disagrees on at least one literal:

ODNF(Z) = (:Z?g A 1’3) V (—LCEQ VA 2 AN —\$4) V

(_\.131 VAU WA _\1‘3) V (.fl A x3g A .%‘4)

2.2 Knowledge Compilation

Implicants were first identified over half a century ago [Z#]ime implicants, in partic-
ular, have been heavily studied because of their abilityotwcisely represent a propo-
sitional theory; a property that has made them ideal forgaslch as circuit mini-
mization [6]. Historically, prime implicants have receiva large amount of attention,
and a number of algorithms have been proposed to compute jmmplicants from an
enumeration of all solutions [21, 20, 24]. Similar work ha&sb done to compile the
complete set of prime implicants from an input of CNF [4, 13] 3 a process referred
to as DUALIZATION [23].

Orthogonal implicants have received less attention, lilipsbvide enticing com-
putational properties. A set of orthogonal implicants, BrGDNF representation, is
closely related to the deterministic decomposable negatiwmal form (d-DNNF) as
described in [13] which has an important location in the kisalge compilation map
[9]. ODNF is arestricted subset of both d-DNNF and DNF — twalaages that are not
from the same lineage in the knowledge compilation map. Asubf the knowledge
compilation map with ODNF included is shown in Figure 1.

In the knowledge compilation map, computational power eenited from the top
down —in Figure 1 the text outside of the boxes indicateslprob that are polynomial
for the given language that are not polynomial for any of itsestors. The problems
of interest areConsistency,ClausalEntailment,M odel Enumeration,Validity, valid
Implicant, ModelCourting, Equality, andSententialEntailment. The languages of
interest are as follows:

2Since every term in ODNF is an implicant, and furthermore epety of terms in ODNF are mutually
inconsistent, we use the termsthogonal implicantshat describe a propositional theory and @DNF
representation of a theory to mean the same thing.



NNF
CO_,ICE, ME
DNNF

VA,IP,C/

FQ? | d-DNNF

DNF

VA_,IP,ISE_,EQ
ODNF IP

Figure 1: Knowledge Compilation Map

e Negation Normal Form (NNF): The family of boolean formul&st are built
from the operators, A, and—, with the added restriction that alloperators are
at the literal level.

e Decomposable Negation Normal Form (DNNF): The family ofleao formulas
that are NNF, but additionally have the property that thenida operands oft
do not share variables.

¢ Disjunctive Decomposable Negation Normal Form (d-DNNFyeTfamily of
boolean formulas that are DNNF, but additionally have ttapprty that the for-
mula operands of are inconsistent.

e Disjunctive Normal Form (DNF): As described in Section 2.1.
e Orthogonal Disjunctive Normal Form (ODNF): As describediection 2.1.

e Prime Implicants (IP): The complete set of prime implicafus a theory (as
described in Section 2.1).

Since any two terms in ODNF are orthogonal, and any singta terODNF does
not contain the same variable twice, ODNF is actually a ictett form of d-DNNF.
Additionally, since ODNF is a restricted form of DNF, it hasetproperty of being
flat — the NNF tree ofv and A operators for an ODNF representation has a height of
precisely two [13].

Being a restricted version of d-DNNF, ODNF shares in all &f dtomputational
advantages that d-DNNF possesses and may contain furthmautational properties
since the language is flat. The added restriction, howeveansithat ODNF is a less
parsimonious language than d-DNNF.



3 Using DPLL for Computing ODNF

In this section, we turn to the problem of computing an ODNpresentation from
a CNF representation by exploiting state-of-the-art Sélliag technology based on
DPLL. More precisely, we exploi#tSAT-solving technology — extensions of DPLL to
perform model counting — to generate our ODNF represemtafidve motivation for
using# SAT-solving techniques follows from the trace of an exhizedDPLL used for
solving #SAT, which represents a list of orthogonal implicants.

We provide the necessary background#8AT-solving techniques in Section 3.1
and describe our algorithm in Section 3.2.

3.1 Introduction to #SAT

When a theory is represented in CNF, one of the most well-kralgorithms to solve
SAT is DPLL. Algorithm 1 is the classic DPLL algorithm thatcindes unit propaga-
tion.

Algorithm 1 DPLL(CNF formulaX): returnstrue if X is satisfiable, and otherwise
returnsfalse.

1: ¥ := UnitProp(X)

2: if ¥ does not contain any clausigen

3. return true
. else ifY contains an empty clausieen

return false

end if
v := choose-variablef)
return DPLL(X Uv) VvV DPLL(X U —w)

I

UnitProp(X) refers to unit propagation, an approach used to simplifysghtactic
CNF representation in such a way that all models are predeiMee premise of unit
propagation follows from the observation that if there i alause in CNF, then all
of the models must satisfy that single literal. We presetightty modified version of
unit propagation in Algorithm 2Unit Prop’. It has been augmented to return the set
of literals that are propagated. While this information i$ @ssential for solving SAT
(or #SAT), it will be important for the task of finding the ODNF reggentation.

Moving from the problem of solving SAT t¢SAT requires only a slight modifica-
tion of the DPLL procedure. Conceptually, we do not stop ansatisfying assignment
is found, but continue to exhaustively explore the searetepWe will refer to this
slightly modified version of DPLL agtDPLL, presented in Algorithm 3. The num-
ber of solutions represented by a partial assignment thigtdatisfies the CNF i,
wherem is the number of unassigned variables [1].

There have been a number of improvements made to the DPLE&RLL algo-
rithms, and in particular we take advantage of five of the nmpbrtant which can be
found in the#SAT solver, sharpSAT [34]. For clarity, these techniqueadd extra
functionality do not appear in Algorithm 3.

Pre-Processing

Before the search begins, a pre-processing step is usedttdygcheck if any variable
setting is entailed by the theory. This is done by testingefifect of setting a variable



Algorithm 2 UnitProp/(CNF formulaX): returns a modified version af and the
variablesR that have been set.

1: @ := queue of all unit clauses A

22 R:={}

3: while @ is not emptydo
uc := pop the next unit clause fro
1 := literal(uc)
/l Remove clauses that are satisfied by the literal
forall ce ¥s.t.l € cdo

removec from X

end for
10: /I Remove the opposite literal since it cannot satisfy asau
11: forall ce ¥ s.t.-l € cdo

© 0N g

12: remove—l frome¢

13: if cis emptythen

14: return UNSAT, {}

15: end if

16: if cis now a unit claus¢hen
17: pushc onto@

18: end if

19: end for

20: /I Record the propagated literal.
21: R:=RUI

22: end while

23: return X, R

Algorithm 3 #DPLL(CNF formulaX): returns the number of models &f
1: ¥ := UnitProp(X)
2: if ¥ does not contain any claustéen
3. m := # of unassigned variables
4 return 2™
5: else if¥ contains an empty clausieen
6
7
8
9

return O
- end if
: v := choose-variabléf)
: return #DPLL(X U v) + #DPLL(X U —w)




to true or false and then applying unit propagation. If the resulting thecoptains
an empty clause (ie. is unsatisfiable), then we can conclhel®pposite setting is
entailed. This test is done for every variable before rugtire#DPLL procedure.

Additionally any unit propagation that can be achieved igied out before the
solving begins.

Conflict Analysis

Once a conflict is found in the search (ie. the partial assegitroauses a clause to be-
come empty), additional analysis is used to determine tbeigg cause for the conflict
[32]. This is achieved by considering which settings in thetijpl assignment have led
to the conflict. A number of different approaches to conflitalgsis exist [2], but all
produce aconflict clause- a clause added to the theory which, with the help of unit
propagation, helps prevent future search in the same sfiahte area.

Non-Chronological Backtracking

Once a conflict is discovered, and a clause learned througftiatanalysis, we can
safely backtrack to the most recent decision level that tsrediteral in the conflict
clause — a process known as non-chronological backtra¢8kjg Normal backtrack-
ing would only backtrack to the latest decision level, bupeleding on the conflict
analysis we may be able to safely backtrack further.

Implicit Binary Constraint Propagation

Similar to the pre-processing step described earlier, ibit@Binary Constraint Prop-
agation (IBCP) is a method of testing whether or not certairiable settings lead to
an unsatisfiable theory [34]. IBCP is employed during thecean a subset of the
variables which have yet to be assigned. The determinafiarizh variables should
be included in the subset is a matter of ongoing researchpli6pnce tested if any are
found to cause the theory to be unsatisfiable the oppostiagét added, as if a unit
clause forcing the variable in that direction had alreadgtex.

This form of inference is equivalent to enforcing Singletart Consistency [26]
on a subset of the variables which are considered important.

Component Caching

Arguably one of the most important contributions#&AT-solving is component caching
[28]. During the execution oftDPLL, when the theory represented in CNF can be par-
titioned into disjoint sets of clauses, such that no two skése a variable, each set of
clauses can be considered independently and the solutionbied (we refer to a
disjoint set of clauses as@mponernt Additionally, certain components may appear
more than once during the solving process so a component megdhed along with
the number of solutions that it contains. When the same cosamias encountered in
the future, the value is retrieved from the cache rather sodring the#SAT problem
recursively on the component.

3.2 CNF-to-ODNF

The main difference betweeaDPLL and our approach is that we record and return
sets of orthogonal implicantgtDPLL, on the other hand, only returns the model count.



Before we present the main algorithm, we start by providioge basic procedures /
definitions that we will use to describe the algorithm:

o term(ly,la,---): Representsthe terfp Aly A ---.
e literals(p): The set of literals that are contained in teym
e components(X): Calculates the set of disjoint components of a theofy

e [, —l,: Respectively, the positive and negative literals comesing to the vari-
ablex.

In order to generate an ODNF fully describing a thebBrywe make use of the fact
that every model o2 must contain eithett = True or x = False for any given
variablez. Like the#DPLL algorithm, we partitiort into two theories corresponding
to whenz = True and whenr = False, and recursively determine the ODNF of
each theory. Recombining the results simply involves thieruof the terms found in
each theory: this is because the pair of theories is mutiradiynsistent with respect to
variablez, and therefore every term from one will be orthogonal to gv¥erm of the
other.

One important operation that we will require is the term spsseduct operatorp.
The operator® works on two sets of terms and results in the combinationlqfaits
of terms. Algorithm 4 describes the procedure that realizesrossproduct operator.

Algorithm 4 S; ® S2: whenS; andS, are sets of terms, returns all possible combi-
nations of terms between the two sets.

1. S={}

2: forall ¢; € 57 do

3. forall g5 € S5 do

4 if 1 andyp, are consisterthen

5: S := S Uterm(literals(o1) U literals(pz))
6 end if

7:  end for

8: end for

9: return S

When we use the operator there are two special cases worth noting. Firehef
of the operands is the empty set then the result of the opesdide the empty set as
well. Second, if one of the operands is a set of just one tdram the operator simply
combines that term with every term in the other set.

The way we partition a theor¥. into two theories is by first selecting a variable
x to partition on, and then producing the two theorigs,) [, and> U —l,. After
recursively solving for the ODNF of U [, andX U —[,, we compute the complete set
of orthogonal implicants by taking their union.

One additional enhancement is to perform unit propagatioiracord a set” of all
the variables that were assigned. Once we are about to réeitmion of orthogonal
implicants fromX U [,, andX U —l,,, we merge/” with the set of implicants (see line 9
in Alg. 5).

It should be noted that ¥ contains no clauses, then the set of orthogonal implicants
describing® is simply the empty set (this becomes our base case). We nanafidhe

3Two components are disjoint if they do not share a variable.



pieces needed to describe the recursive procedure foragengethe ODNF of a theory
given in CNF. This is shown as Algorithm 5.

Algorithm 5 Simple-ODNF-Search(CNF formulg): returns a set of orthogonal im-
plicants (ODNF) that is equivalent 0.
3,V = UnitProp(%)
if 3 contains an empty claugleen
return {}
end if
v := choose-variablef)
S; := Simple-ODNF-Search{ U [,)
S = Simple-ODNF-Search{ U —i,)
if V' # () then
return (S; U Sy) ® {term(V)}
else
return (S; U Sy)
- end if

=
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Clearly, there is a strong similarity between Algorithmsrial 8. #DPLL has the
property that every model is captured by one (and only oref)riede in the search
tree, but instead of recording how many solutions exist uadeartial assignment, we
record an orthogonal representation that fully describhegteory that results from a
partial assignment.

Just as component analysis has been shown to provide s@gmifiroprovements
in solving #SAT [28], we can leverage the same technique in the task opitiom
ODNF. To do this, we take advantage of the following lemma:

Lemma 1 If X is adisjointtheory made up of independent compongniss,, - - - , X,
then we have:

ODNF(X) = ODNF(3;) © ODNF(33) @ - -- ©@ ODNF ()

To see why this is the case, it is easier to consider only twidit theories |
and,, and take advantage of the fact that theperator is associative (this follows
from the definition ofg). The ODNF of a component completely describes the set of
variable assignments that satisfy that component. Sihcend>:, are disjoint (with
respect to variables), an assignmenkttfoJ X5 must be an assignment to bath and
3o individually. Taking the® operator thus provides a set of orthogonal implicants
that fully describes; U 3.

Treating disjoint components separately allows us to éilte problem during
compilation. Algorithm 6 demonstrates this improvemerdgro&lgorithm 5. On line 7
we treat each component individually, and combine the tesogjether on lines 10-14.

As mentioned in Section 3.1, many other improvements fromyABAT literature
can be incorporated as well, and we discuss the implementatdetails in Section
4.1.

4 Implementation and Experimental Evaluation

We implemented our algorithm as an extension to sharpSAF+ai@plementation of
the #DPLL algorithm. In this section, we describe the details wf implementation,

10



Algorithm 6 ODNF-Search(CNF formul&): returns a set of orthogonal implicants
(ODNF) that is equivalent t&.
1: 3,V := UnitProp(X)
. if X contains an empty clauskeen
return {}
end if
v := choose-variabl&f)
S:={}
: for all component € components(X) do
S; := ODNF-Search¢ U [,)
Sy := ODNF-Search¢ U —l,,)
if first time in the loopghen
S = (S, USy)
else
S:=5®(S.USy)
end if
: end for
:if V # O then
return S ® {term(V)}
. else
return S
:end if

© o NN
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followed by the experimental evaluation we performed to sneathe effectiveness of
our approach.

4.1 Implementation Details

In what follows, we describe five key components of c2o.

Pre-Processing

The pre-processing step of sharpSAT involves the potedisabvery of variables that
can take on only a single setting (referred to as a backbaomebl@ [15]). During this
phase, we keep track of every variable that is discoveredaradpost-processing step
we add all of these variable settings to each orthogonalicapt individually.

Conflict Analysis

Conflict analysis involves the addition of new clauses tottieory that prevent the
solver from exploring the same (failed) search space adaiditional effort to main-
tain the orthogonal implicants is not required because®fdiowing property:

Proposition 1 If ¢ is an implicant of the theor¥. (ie. ¢ = X), and¢ is an implicate
of ¥ (ie. ¥ = ¢), then we can conclude | ¢.

This follows from the definition of= since every model ap must also be a model
of X, which in turn must also be a model ¢f Therefore, an implicant of a propo-
sitional theory must coveainy implicate of the theory; including those added due to
conflict analysis.

11



Non-Chronological Backtracking

Non-chronological backtracking unsets a number of vagisbhsed on a conflict found
during search. Backtracking away from a sub-space that hdiseaovered solutions
would invalidate the final solution count. Because of thigreSAT is particular in how
far it backtracks once a conflict is found. This guaranteas dlr approach does not
miss orthogonal implicants during the execution of nomeaetogical backtracking.
The modifications required for this portion of the sharpSAlver involved properly
clearing out the orthogonal implicants that have becomalidated (ie. when one of
the components is unsatisfiable in lines 7-14 of Algorithm 6)

Implicit Binary Constraint Propagation (IBCP)

The implementation of IBCP in sharpSAT allows us to treatenyable setting due to
IBCP as a propagated literal. This is handled as describAtyorithm 6.

Component Caching

In sharpSAT, only the number of solutions is cached with a poment. This was
extended so that the set of implicants associated with a opem was stored in a
separate cache. We stored a pointer to this set of implig@tiishe cached component
so when the component is encountered again, we would nottogedalculate the set
of implicants associated with it.

When the component cache uses too much memory (a run-tiniregskett sharp-
SAT), the component cache is purged of old components. Whgmdaours, we also
delete the set of implicants associated with that comporngtite same component is
encountered later in the search, both the solution counsetaf orthogonal implicants
will be re-computed.

The data structure used to store a set of implicants is a imapkementation and
this led to the bottleneck of our CNF-to-ODNF converter. imyfing this is a point of
future work we intend to pursue.

4.2 Experimental Results

To evaluate our algorithm, we investigated three sepasates:

1. How does our implementation compare with other apprcattet perform the
same task?

2. Which#SAT technologies have an impact on the efficiency of findingago-
nal implicants?

3. Is there correlation between c20 and sharpSAT run-timepeance?

Experiments were conducted on a Linux desktop with a DuatQat3GHz pro-
cessor and 2GB of memory. The propositional theories usee @ither from SATLIE
or generated as random 3SAT problems at a 4.25 clause-itbiaratio.

During the execution of c2o we limited the memory allowed 83B. c20 was im-
plemented as a modified version of sharpSARd is written in C++ and compiled with

“http://www.satlib.org/
Shitp://www2.informatik.hu-berlin.de/ ~ thurley/sharpSAT/index.html
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GNU GCC. Primeii is written in common lisp, and the intergraised was SBCE c2d
is available for download as a binary.

Algorithm Comparison

In order to see how our solver compares with other approattiasonvert CNF-to-
ODNF, we tested it on a range of inputs with two other progragonsneii [3] andc2d
[8]. Further discussion on primeii and c2d is provided int®ec5.1. All solvers were
run with their default settings and a twenty minute time timi

As an initial step, primeii uses a variation of th&/BLIZATION algorithm to com-
pute a set of prime implicants. The set of prime implicanessdoot include all possible
prime implicants, but enough to fully describe the theorje Boftware then uses a
graph-based approach to convert the set of prime impli¢cattSODNF.

The c2d software uses a DPLL-based search and records teedfghe search
space to compile a d-DNNF representation. The ODNF reptaten can be extracted
from the d-DNNF by enumerating all possible paths in the d\BIN\structure. The
complexity of this final process is linear in the size of theNIForepresentation.

The problems used for this experiment were random 3-SARiwss with a 4.25
clause-to-variable ratio. The number of variables conmsidlevas 100, 150, 175, and
200. Twenty problems from each size class were generatddharrun-times for each
of the three solvers recorded.

The means and standard deviations of the solvers’ run-tameshown in Figure 2
— the error bars indicaté one standard deviation of the mean run-time. Primeii was
unable to solve any problems with more than 100 variablestimeaty minute time-
out. Additionally, at sizes 175 and 200, c2o ran out of menwrytwo of the twenty
instances (their values are removed from the average /at@ua@dviation calculations).

As an initial step, c2d performs a decomposition of the @dhgsaph that causes
a delay before beginning to solve the problem. This led toam&performing c2d on
instances with 175 variables, but in general c2d scalesibgith problem size, mainly
due to the heavy memory usage by c20. Despite this drawbabtko&o, we found
the difference in run-time between c2o0 and c2d to not bessiElly significant at
these problem sizes. A pairwise t-test was used to veri§ t#nd the results for each
problem size are provided in Table 1. For all problem sizes statistical comparison
was not significant gt < 0.005.

Problem Size| Mean Difference (seconds)
100 0.118
150 1.384
175 -0.461
200 8.420

Table 1: Pairwise t-test Comparison — None of the differsrare significant gp <
0.005

Shttp://www.sbcl.org/
"http://reasoning.cs.ucla.edu/c2d/
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Mean Runtime Results
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Figure 2: Mean Run-times

Parameter Effect

In order to show the effect of using differefSAT-solving technologies in our solver,
we performed an analysis of variance (ANOVA) using the Ristiatl package [25].
For a particular instance, we ran c20 with every possiblamater setting; in total 32
different variations. The data sets used were the uniformda®n instance problems
and flat graph colouring problems from SATLIB (the number aflgems in each data
set is 94 and 50 respectively).

The results for the uniform random problem set and flatgraphlpm set are sum-
marized in Table 2. The value indicates the probability tigihg the associated pa-
rameters does not affect the run-time — the lower the prdibatthe more significant
changing the parameter settings affects the running tinesulgs that are very signif-
icant (< 0.001) are indicated in bold, and results that are mildly significg 0.05)
are indicated in italics. We only include the parameteiirsgstthat were significant for
either data set. Abbreviations used for the five parameténgs are pre-processing
(pp), conflict analysis (ca), non-chronological backtiagkncb), component caching
(cc), and implicit binary constraint propagation (ibcp).

For both problem sets we found component caching to playrafisignt negative
role. Upon further investigation, this was found to be causgthe overhead required
for maintaining the cache, which was seldom used. In manhefristances for both
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Factor(s)| Uniform Pr(>F)  Flatgraph PréF)
ca 2.220 x 1013 1.525 x 10~72
cc 1.414 x 10719 < 2.000 x 10~16
ibcp 2.530 x 107 2.374x107!
ca:cc 2.936 x 1074 4.531x10~!

Table 2: ANOVA Results for Uniform Random Instance and Flaagh Colouring
Problem Sets

Factor | Uniform  Flatgraph
pp - -
ca X —
nch —
cc X X
ibcp vV -

Table 3: Tukey HSD Results:y/" and ‘x’ indicate that using the technology had a
positive and negative impact (respectively), while indicates there was no significant
difference in performance.

data sets, there were only a small number of successful tatsherendering this fea-
ture harmful for usage when generating orthogonal impti&af more formal analysis
of parameter impact was achieved by conducting a Tukey HSfJdeeach individual
setting. The result of this test is presented in Table 3. édts were performed at a
significance level op < 0.005.

For the uniform random problem set, we found that the use mflicoanalysis hurt
the performance as well, and the combination of both cor#hiellysis and component
caching was significant in negatively affecting the rundinmplicit binary constraint
propagation, on the other hand, had a positive impact ondhers efficiency for
uniform random problems.

In contrast to the uniform random problems, we found thaflmiranalysis pro-
vided a minor improvement for the solvers’ efficiency on tla¢ raph colouring prob-
lems. The Tukey HSD test did not show a significant resujt &t 0.005, but it was
close withp = 0.0152.

Correlation to sharpSAT

We would expect improvements to the task68AT to also help in our approach to
the task of CNF-to-ODNF conversion. One indicator of thisuldobe a correlation
between the power of the unmodified sharpSAT and c2o0 withexddp different pa-
rameter settings. For a given instance we measured thémenetn each of the 32
different parameter settings for both sharpSAT and c2o0. etation coefficienty,
was then calculated from the run-times of each solver.

Table 4 summarizes the mean and standard deviation efvalues (one for each
instance in the data set). The data sets used were the sahgeps\tious experiment.

For the uniform random problem set, we generally found atjescorrelation
when comparing the run-times. A large majority of instanicethe uniform random
data set were very strongly correlatedvalue of at least 0.9). We found that those
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statistic\ data set| uniform | flat-graph
Mean Correlation| 0.606 -0.004
STD Correlation| 0.357 0.180

Table 4: Correlation Results: Values indicate the mean #mdard deviation of--
values which are computed on a per-instance basis.

with a smaller correlation coefficient tended to have a vemglsstandard deviation of
run-time over all parameter settings. We suspect that witih & small deviation, the
significance of parameter settings on the run-time is atyitand would lead to a low
correlation coefficient.

To demonstrate at a high level how the two solvers compard@mmiform ran-
dom problem set, we plot the run-times for every problemains¢ on every parameter
setting in Figure 3. A portion of the data points are magnifiedhow the general
correlation between the run-times of the two solvers, arideadfy = z is included
for reference.

Runtime Correlation

%o

sharpSAT Run-Time (seconds)

0.8 1.0 1.2 'I.d

& LB
#ODNF Run-Time {seconds)

20 25 30 £l 40 45
#ODNF Aun-Time (seconds)

Figure 3: Run-time Comparison on Uniform Random Problems

For the flat graph colouring data set a meaningful compasissnot possible. The
reason the correlation given in Table 4 is so low is due toxtremely low deviation on
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sharpSAT’s performance with this data set. This floor effecaused by the extremely
small run-time needed for sharpSAT to solve the problemsdéraonstrate this, we
ran sharpSAT on the flat graph data set with all 32 parametimg® giving us a set of
run-timesR;, and then repeated the experiment to give us a set of rurstitpe We
would expect to see a correlation betwdenand R, but we find that, with am-value
of 0.051, there is very little correlation. The differenéesun-times of sharpSAT are
dominated by the noise caused by individual executions @ftiftware. In contrast,
checking the correlation between two successive runs obnabe flat graph problem
set yields an-value of 0.999.

4.3 Discussion

We have established a correlation between the efficienc@@aad sharpSAT over all
parameter settings, but we have also shown the negativecinspenponent caching
has on c2o. This is somewhat surprising since the use of coempe@aching has been
credited for much of the success of mode4SAT solvers.

One initial distinction is that the success attributed tmponent caching igSAT
solvers typically includes the use of disjoint componer#lgsis — the process of ana-
lyzing each component individually and combining the solh. This approach is an
aspect of sharpSAT that cannot be disabled. Thereforerdiega of parameter setting,
c20 will take advantage of disjoint component analysis.

Under the assumption that disjoint component analysisad,usomponent caching
will have a far lower positive impact on the efficiency of#8AT solver. During the ex-
ecution on some classes of problems, repeated componepntsatiar very few times,
or even never. In these situations, component caching antiers the efficiency, and
in general the problem sets considered in our experimengliation fell under this
category. In the case of c20, this negative impact is maghdige to the overhead
involved in maintaining the orthogonal implicants whiléngsthe component cache.

To verify this was the cause of component caching’s behayviee performed an
analysis of variance on the unmodified sharpSAT software.falad that similar to
c20, component caching had a negative, though statistizedignificant, impact on
the solver’s efficiency.

5 Discussion and Future Work

In this paper we proposed an algorithm, ODNF-Search, thapdes a propositional
theory from CNF to a set of orthogonal implicants. Our impéeration of the ODNF-
Search algorithm, c20, is able to compile a set of orthogimnplicants by leveraging
advances in moder#SAT-Solver technology.

We compared c20 with two other solvers that have the abiityadmpute orthog-
onal implicants: primeii and c2d. c2o clearly outperfornpetineii, demonstrating its
ability to solve much larger problems, and when compared2tbwee found there to
be little statistical difference. However, we expect thzd evould out-perform c20 on
problems with more than 200 variables.

We demonstrated the intrinsic properties of our solver @ahating precisely which
#SAT technologies contribute to the performance of c2o. Wmdbthat component
caching significantly hindered the solver's performancéiswas in part due to the
limited amount of cache hits during the execution of c2o anpfoblems considered,
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but mainly due to the overhead involved in storing partiatipstructed orthogonal im-
plicants. Conflict analysis had both a positive and negétiyect on the performance
of c2o0 depending on the problem type, and for randomly géeenaroblems implicit
binary constraint propagation proved beneficial.

Finally, we attempted to determine whether or not the paréarce of c20 coincides
with the performance of sharpSAT on similar problems. Regilre a strong indica-
tion that new advances i SAT-solving technology — specifically improvements to the
sharpSAT software — will boost the efficiency of c2o.

5.1 Related Work

In Section 4, we compared the performance of c20 with tworgthexes of software,
primeii, and c2d. Here we elaborate on the differences bewlee approaches under-
lying these different software systems.

Based on the classic ALIZE algorithm [23], Bittencourt proposed a method,
called primeii, for computing a form similar to ODNF [3]. The first step of ieii
is to produce a set of prime implicants — the set generateslmimeanclude every prime
implicant, but enough to fully describe the theory. Thisékiaved by performing an
A* search through the space of partial implicants where etate in the search space
corresponds to a partial assignment of the variables. Meigting states correspond
to the literals that can be added to the partial assignmanit that more clauses are
covered by the partial implicant — recall that a partial gissient satisfies a theory in
CNF when every clause has a literal corresponding to a Jargatting. Final states in
the search correspond to prime implicants of the theory.

Primeii works by maintaining a subset of the prime implicathiat are sufficient to
describe the theory. Once a complete set of prime implidagisnerated, the prime im-
plicants are compiled into an orthogonal form by repeatgiegttion of the inclusion-
exclusion principle [10] — implicants that describe an ¢aeping set of models are
broken up to become orthogonal. The motivation for Bittemts approach is to pro-
vide exact information about the distribution of solution®rder to aid in the process
of Belief Revision. The key difference of our approach is thva do not compute an
intermediate form of prime implicants prior to generatimgoathogonal representation.

Recent work by Darwiche et al. [8] points out how a similar @aeh to the one
presented here can be used to compile a theory into d-DNNTg @ssolver that they
have constructed callecd c2d records the search trace of the exhaustive DPLL
algorithm, and structures the trace into d-DNNF form. Hoarelsefore the DPLL pro-
cedure begins, c2d pre-computes sets of variables tha¢ thesheory to decompose
into disjoint components. This information is stored in maisture referred to as @&
tree and it is used to guide the variable ordering heuristic i.DBs well as indicate
when the theory has become disjoint.

The decisions made by the DPLL algorithm correspond to alesdn the d-DNNF
representation, and the d-tree corresponds to and-notles thDNNF representation.
Additionally, any literals found through inference arecadlscorded as and-nodes in the
d-DNNF representation. There are two key differences betve20 and c2d. Firstly,
the ODNF, which our method explicitly generates, is impljcrepresented by the d-
DNNF that is generated by c2d. Second, we take advantageagfSAT's dynamic
component analysis technology to compute disjoint comptnen-the-fly rather than
pre-computing where the decomposition will occur.

Related to the task of compiling ODNF is the minimization &fjdnctive normal
forms. In this case the input is already in DNF, and the tagk #nd an equivalent
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DNF which has as few terms as possible. Minimization invelkemoving redundant
implicants and finding a representation that covers as malgi@ns as possible with
little overlap between terms. The task of minimizing the Di#Fm from an ODNF
expression, or total enumeration of satisfying assignméasttypically referred to as
two-level circuit minimization [6]. Approaches includeetfEsSPRESSO21] and the
Quine-McCluskey [24] algorithms. While the work presentedhis paper does not
perform two-level circuit minimization, it can be used t@fgprocess a theory described
in CNF into a form that logic minimization algorithms can kiéan

5.2 Future Work

There are a number of different areas that we would like testigate further. Here
we outline some of the more interesting ones.

Clause Learning

At a high level we have investigated the impact that confli@lgsis has on c2o and
shown that it has a negative impact on the solvers efficieftywever, the question
remains as to whether or not certain types of clause leag@ngrovide a benefit for
the task of orthogonal implicant generation.

There are a number of clause learning schemes availablr@}here is a possibil-
ity that the chosen scheme could have an impact on the siz®bfFJepresentations
that would be generated. Intuitively, clauses that caussehrch space to be as shallow
as possible should lead to smaller implicants. This couer dhe trade-offs already
known to exist between the different clause learning sclseme

Prime Implicants

Instead of recursively generating orthogonal implicaot® could imagine returning a
set of prime implicants. In Algorithm 6 we could alter lineg &nd 19 to convert the
implicants into prime forms before returning them. This bamachieved by removing
literals from each individual implicant until they mininiatover the theory at that step
in the algorithm.

This approach would likely cause the solver to take more tifhen generating im-
plicants, but the final form would be strictly smaller than P For tasks that require
only a set of prime implicants, this form of compilation magngrate a representation
much smaller than ODNF. Note, however, that the prime inaplis generated would
not be the set of all prime implicants of the theory.

Compact Representation

A potential inefficiency to our current approach is that weheapartial solutions ex-
plicitly rather than in a compact symbolic form, resultimgai large amount of unneces-
sary memory use. As an alternative, we would like to inveséigtoring partial results
in symbolic form and reconstructing solutions at the endhefgrocess.

More specifically, instead of recording all of the literalat are set during the
#DPLL process, we can simply store the decisions made alomgvly. The final
representation would be in d-DNNF, but wouldt represent the theory. However,
along with the knowledge of what inference techniques waed(unit propagation,
IBCP, etc.), we would be able to reconstruct a d-DNNF sintidawvhat c2d generates,
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or explicitly list a set of orthogonal implicants similar wehat c2o generates. This
approach is advantageous because compiling to the full BHBdF ODNF could be
done in a post-processing step.

Only considering the decision variables would generatepaesentation strictly
smaller than the d-DNNF generated by c2d. Intuitively, thibecause the reduced d-
DNNF generated would be an induced subgraph of the d-DNNErg#ed by c2d. The
proposed approach would also substantially speed up cZegjoyring far less overhead
to maintain the representation during execution. The filANNF would represent a
tree of backdoor sets [15], where every root-to-leaf pathildeepresent a backdoor
set with respect to the inference used. Enumerating all @ftithogonal implicants
can be achieved by enumerating all root-to-leaf paths thdtad a positive leaf, and
performing the indicated inference on the backdoor set tbdint which literals must
be additionally in the orthogonal implicant.

Flat d-DNNF Computational Power

Finally, as noted in Section 2.2, ODNF is a flat form of the dNIlNlanguage. From
a knowledge compilation perspective, there may be cerjgiast of queries that are
easier to solve in this flat form. We hope to investigate whietlr not any existing
problems are easily solved by a knowledge base represen@dMNF form.
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