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Abstract

Temporally extended goals are critical to the specification of a
diversity of real-world planning problems. Here we examine
the problem of non-deterministic planning with temporally
extended goals specified in linear temporal logic (LTL), in-
terpreted over either finite or infinite traces. Unlike existing
LTL planners, we place no restrictions on our LTL formu-
lae beyond those necessary to distinguish finite from infinite
interpretations. We generate plans by compiling LTL tem-
porally extended goals into problem instances described in
the Planning Domain Definition Language that are solved by
a state-of-the-art fully observable non-deterministic planner.
We propose several different compilations based on transla-
tions of LTL to alternating or non-deterministic (Biichi) au-
tomata, and evaluate various properties of the competing ap-
proaches. We address a diverse spectrum of LTL planning
problems that, to this point, had not been solvable using Al
planning techniques, and do so in a manner that demonstrates
highly competitive performance.

1 Introduction

Real-world planning problems involve complex goals that
are temporally extended, require adherence to safety and
liveness constraints, and often necessitate the optimization
of preferences or other quality measures. Linear Temporal
Logic (LTL) is a language that can be used to specify such
constraints (Pnueli 1977).

Planning with deterministic actions and LTL goals has
been well studied, commencing with the works of Bacchus
and Kabanza (2000) and Doherty and Kvarnstrom (2001).
Significant attention has been given to compilation-based
approaches (e.g., (Rintanen 2000; Cresswell and Codding-
ton 2004; Edelkamp 2006; Baier and Mcllraith 2006; Pa-
trizi et al. 2011)), which take a planning problem with an
LTL goal and transform it into a classical planning prob-
lem for which state-of-the-art classical planning technology
can often be leveraged. The more challenging problem of
planning with non-deterministic actions and LTL goals has
not been studied to the same extent; Kabanza, Barbeau, and
St.-Denis (1997), and Pistore and Traverso (2001) have pro-
posed their own LTL planners, while Patrizi, Lipovetzky,
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and Geffner (2013) have proposed the only compilation-
based approach that existed prior to this work. Unfortu-
nately, the latter approach is limited to the proper subset of
LTL for which there exists deterministic Biichi automata. In
addition, it is restricted to the interpretation of LTL over in-
finite traces and the compilation is worst-case exponential in
the size of the goal formula. Finally, it is subject to a double-
exponential blowup, since there exist LTL formulae of size
n for which any recognizing deterministic Biichi automaton
has 22" states (Kupferman and Rosenberg 2010).

In this paper, we propose four compilation-based ap-
proaches to LTL planning with non-deterministic actions
that exploit translations from LTL to alternating or non-
deterministic (Biichi) automata. In each case, we compile
LTL goals, together with the original planning domain, spec-
ified in the Planning Domain Definition Language (PDDL),
into PDDL that is suitable for input to standard fully ob-
servable non-deterministic (FOND) planners. We compare
compilations that exploit alternating automata to those that
exploit non-deterministic automata, in the differing cases
where LTL is interpreted over either finite or infinite traces.
The approaches based on non-deterministic automata com-
pilations capture the full expressivity of LTL for finite and
infinite traces. They are sound, complete, and although the
compilations are theoretically worst-case exponential in size
with respect to the size of the original LTL, they do not
manifest these exponential properties in practice. The other
two approaches based on alternating automata have compi-
lations that are linear in the size of the original LTL. The
approaches are sound but incomplete for both the finite and
infinite cases. To obtain completeness we would have lost
the linear properties of the compilation. This restricted lin-
ear compilation produced inferior performance compare to
our non-deterministic approach, so we did not include our
complete alternating automata based approaches which lose
the linear properties whose merits we wished to evaluate.

Our approaches build on methods for finite LTL planning
with deterministic actions by Baier and Mcllraith (2006)
and Torres and Baier (2015), and for the infinite non-
deterministic case, on the work of Patrizi, Lipovetzky, and
Geffner (2013). While in the finite case the adaptation of
these methods was fairly straightforward, the infinite case
required non-trivial insights and modifications to Torres and
Baier’s and Baier and Mcllraith’s approaches. We evaluate



the relative performance of our compilation-based systems
using a state-of-the-art FOND planner, and demonstrate that
they are competitive with or superior to the state of the art.

Our work presents the first realization of a compilation-
based approach to planning with non-deterministic actions
where the LTL is interpreted over finite traces. Furthermore,
unlike previous approaches to LTL planning, our compila-
tions make it possible, for the first time, to solve the full
spectrum of FOND planning with LTL goals interpreted over
infinite traces. Table 1 summarizes existing compilation-
based approaches and the contributions of this work. Im-
portantly, our compilations can be seen as a practical step
towards the efficient realization of a class of LTL synthesis
tasks using planning technology (e.g., (Pnueli and Rosner
1989; De Giacomo and Vardi 2015)). We elaborate further
with respect to related work in Section 5.

2 Preliminaries

2.1 FOND Planning

Following Ghallab, Nau, and Traverso (2004), a Fully Ob-
servable Non-Deterministic (FOND) planning problem is a
tuple (F,Z,G, A), where F is a set of fluents; T C F
characterizes what holds initially; G C F characterizes the
goal; and A is the set of actions. The set of literals of F
is Lits(F) = FU{~f | f € F}. EBachactiona € A
is associated with (Pre,, Eff ,), where Pre, C Lits(F) is
the precondition and Ejff, is a set of outcomes of a. Each
outcome e € Eff , is a set of conditional effects (with, possi-
bly, an empty condition), each of the form (C' — ¢), where
C C Lits(F) and £ € Lits(F). Given a planning state
s C F and a fluent f € F, we say that s satisfies f, de-
noted s = fiff f € s. In addition s = —f if f & s, and
s = L for a set of literals L, if s = ¢ for every £ € L.
Action a is applicable in state s if s |= Pre,. We say s’ is
a result of applying a in s iff, for one outcome e in Eff ,,
s'isequalto s\ {p | (C — —p) € e,s = C}U{p |
(C — p) € e,s = C}. The determinization of a FOND
problem (F,Z,G, A) is problem (F,Z,G, A’), where each
non-deterministic action a € A is replaced by a set of deter-
ministic actions, a;, one action corresponding to each of the
distinct non-deterministic effects of a.

Solutions to a FOND planning problem P are policies. A
policy p is a partial function from states to actions such that
if p(s) = a, then a is applicable in s. An execution of a pol-
icy p in state s is an infinite sequence (sg, ag), (1,01), .. .
or a finite sequence (So,aq),- .., (Sn—1,0n—1), Sn, Where
so = s, and all of its state-action-state substrings s, a, s’
are such that p(s) = a and s’ is a result of applying a in s.
Finite executions ending in a state s are such that p(s) is un-
defined. An execution o yields the state trace 7 that results
from removing all the action symbols from o. Alternatively,
solutions to P can be represented as finite-state controllers
(FSCs). We refer the reader to (Geffner and Bonet 2013;
Patrizi, Lipovetzky, and Geffner 2013) for details.

Following Geffner and Bonet (2013), an infinite execution
o is fair iff whenever s, a occurs infinitely often within o,
then so does s, a, s', for every s’ that is a result of applying
a in s. A solution to (F,Z,G,.A) is strong cyclic iff each

of its executions in Z is either finite and ends in a state that
satisfies G or is (infinite and) unfair. Intuitively, such fairness
over executions of a strong-cyclic solution guarantees that
from every reachable state, a goal state can eventually be
reached assuming that no effect is always avoided.

2.2 Linear Temporal Logic

Linear Temporal Logic (LTL) was first proposed for verifi-
cation (Pnueli 1977). An LTL formula is interpreted over an
infinite sequence, or frace, of states. LTL interpreted over fi-
nite traces has received attention from the planning commu-
nity (Gerevini and Long 2005; Baier and Mcllraith 2006).
De Giacomo and Vardi (2013) provided a formal descrip-
tion and named it LTLs. LTL and LTL¢ use modal operators
next (O), and until (U), from which it is possible to define
the well-known operators always ((J) eventually ($), and re-
lease (R). LTL¢, in addition, allows a weak next (®) oper-
ator. An LTL/ LTL¢ formula over a set of propositions P is
defined inductively: a proposition in P is a formula, and if
¢ and x are formulae, then so are =), (¢ A x), (¥ U x), O,
and @1,

The semantics of LTL and LTL¢ is defined as follows. For-
mally, a state trace 7 is a sequence of states, where each state
is an element in 2. We assume that the first state in 7 is
s1, that the i-th state of 7 is s; and that || is the length of
7 (which is oo if 7 is infinite). We say that 7 satisfies ¢
(7 = ¢, for short) iff 7,1 |= ¢, where for every ¢ > 1:

e 7,1 |= p, for a propositional variable p € P, iff p € s;,

e 7,i |= =) iff it is not the case that 7, ¢ = v,

e T i= (W AX)iffm,i = Yand i,

o m,il=Opiffi <|rlandm,i+ 1 ¢,

o m,i = (1 Ugy) iff for some j in {%,...,|n|}, it holds
thatm,j = po and forall k € {i,...,5 — 1}, m, k = ¢,

o mil=®piffi=|r|orm,i+1fE .

Observe operator ® is equivalent to O iff 7 is infinite. As

such we allow ® in LTL formulae, we do not use the acronym

LTL¢, but we are explicit regarding which interpretation we

use (either finite or infinite) when not obvious from the con-

text. As usual, Oy is defined as (true U o), Oy as =0,

and (¢ Rx) as =(—¢ U =x).

Given an LTL/LTL¢ formula ¢ there exists an automaton
A, that accepts a trace 7 iff 7 |= . Depending on whether
« is finite or infinite, different types of automata are needed.

For the finite case, such automata may be either non-
deterministic or alternating. A finite trace is accepting
when a run of the automaton finishes in a so-called accept-
ing automaton state. For the infinite case, such automata
may be either Biichi non-deterministic or Biichi alternating
(Vardi and Wolper 1994). Biichi automata accept an infi-
nite trace when a run of the automaton visits accepting au-
tomaton states infinitely often. Alternation generates com-
pact automata, the number of states in A, is linear in the
size of ¢ (in both the infinite and finite cases), while non-
deterministic (Biichi) automata are worst-case exponential.

These automata constructions can be exploited to compile
LTL goals into planning problems that use existing plan-
ning technology for non-temporal goals. A challenge to



Infinite LTL

Deterministic Actions | Non-Deterministic Actions

Deterministic Actions

Finite LTL
| Non-Deterministic Actions

[Albarghouthi et al., 2009] (EXP)
[Patrizi et al., 2011] (EXP) [this paper (ABA)] (limited LTL) (LIN)

[this paper (NBA)] (EXP)

[Patrizi et al., 2013] (limited LTL) (2EXP) [Edelkamp, 2006] (EXP)
[Cresswell & Coddington, 2006] (EXP)
[Baier & Mcllraith, 2006] (EXP)

[Torres & Baier, 2015] (LIN)

[this paper (AA)] (limited LTL) (LIN)
[this paper (NFA)] (EXP)

Table 1: Automata-based compilations for LTL planning. In brackets, size of resulting automata relative to the original LTL
formula: (double-)exponential, (2)EXP; linear, LIN. Our approaches are based on non-deterministic finite state automata, NFA;
non-deterministic Biichi automata , NBA; alternating automata, AA; and alternating Biichi automata, ABA.

planning with LTL is that LTL imposes a path constraint on
the definition of a valid plan. Highly optimized techniques
for heuristic search planning work well when the goal is
a final-state goal. As such the idea behind a compilation
approach to planning with LTL is to transform LTL tem-
porally extended goal formulae into one or more automata.
The original planning problem is then augmented to include
the automata accepting conditions as final-state goals, and
the initial state of the automata as part of the initial state of
the planning problem. The transition system of the original
problem is similarly augmented so that the automata states
are updated as additional effects of the planning domain ac-
tions. Table 1 summarizes state-of-the-art automata-based
approaches for deterministic and FOND LTL planning. As
noted in the introduction, there has been very little work on
non-deterministic planning with LTL.

3 FOND Planning with LTL Goals

An LTL-FOND problem is a tuple (F,Z, ¢, A), where F,
7, and A are defined as in FOND problems, and ¢ is an LTL
formula. Solutions to an LTL-FOND problems are FSCs.

Definition 1 (Finite LTL-FOND). An FSC 1l is a solution
Sor (F,Z, v, A) under the finite semantics iff every execu-
tion of Il over 1L is such that either (1) it is finite and yields a
state trace w such that ™ |=  or (2) it is (infinite and) unfair.

Definition 2 (Infinite LTL-FOND). An FSC 11 is a solution
Jor (F,I, ¢, A) under the infinite semantics iff (1) every ex-
ecution of 11 over I is infinite and (2) every fair (infinite)
execution yields a state trace w such that w = .

Our general approach to solve an LTL-FOND problem,
‘P, comprises three steps. In step one, P is compiled into
a FOND problem P’. In step two, a sound and complete
FOND planner is used to produce a policy that solves the
compiled problem. Finally, in step three, the resultant pol-
icy is transformed into an FSC that is a solution to P. Below
we present four compilations — two for Infinite LTL-FOND
(Section 3.1), and two for Finite LTL-FOND (Section 3.2).
Each exploits a correspondence between LTL and either al-
ternating or non-deterministic automata.

We refer to step one of our approach as the compilation
step and to the three steps collectively as the AA-based ap-
proach (respectively, NFA-based, ABA-based, NBA-based),
depending on which automata are employed in the compi-
lation step. The step three transformation of the policy into
the FSC is straightforward, simply involving removal of all
mention of the automata (extra bookkeeping fluents and ac-
tions we introduce to track automata state) from the step-two

policy to produce a final FSC. The interested reader can find
the details in (Camacho et al. 2016).

Our approaches are the first to address the full spectrum of
FOND planning with LTL goals interpreted over finite and
infinite traces. In particular our work is the first to solve full
LTL-FOND with respect to infinite trace interpretations, and
represents the first realization of a compilation approach for
LTL-FOND with respect to finite trace interpretations.

3.1 From Infinite LTL-FOND to FOND

We present two different compilations for Infinite LTL-
FOND. The first exploits alternating Biichi automata (ABA)
and is linear in time and space with respect to the size of the
LTL formula. The second exploits non-deterministic Biichi
automata (NBA), and is worst-case exponential in time and
space with respect to the size of the LTL formula. Interest-
ingly, the NBA-based approach’s performance is superior.

3.1.1 ABA-based Compilation Our ABA-based compila-
tion builds on ideas by Torres and Baier (2015) for alternat-
ing automata (AA) based compilation of finite LTL planning
with deterministic actions (henceforth, TB15), and from Pa-
trizi, Lipovetzky, and Geffner’s compilation (2013) (hence-
forth, PLG13) of LTL-FOND to FOND. Combining these
two approaches is not straightforward. Among other rea-
sons, TB15 does not yield a sound compilation for the in-
finite case, and thus we needed to modify it significantly.
This is because the accepting condition for ABAs is more
involved than that of regular AAs.

Given an LTL-FOND problem, the first step in the com-
pilation is to build an ABA for our LTL goal formula ¢ over
propositions F, which we henceforth assume to be in nega-
tion normal form (NNF). Transforming an LTL formula ¢ to
NNF can be done in linear time in the size of . The ABA
we use below is an adaptation of the ABA by Vardi (1995).
It is represented by a tuple A, = (Q, X, J, ¢y, Q Fin ), Where
the set of states, @@ = {¢. | @ € sub(p)}, X contains all sets
of propositions in P, Qrin = {qarps | ®RB € sub(yp)}
and the transition function, J is given by:

5(qe ) = {T if s |= £ (¢, literal)

1 otherwise

(QOM\ﬁv ) = 5(‘]&7 5) A 5(‘]57 5)
(qOOzvS) = qa

(Qa\/[% ) = 6(qa7 5) \% 5(Qﬁ7 5)

6(qaup,s) = 0d(gp,s) V(6(da,s) A gaup)

6(garp,s) = 0(qp, ) A (6(da,s) V garp)



O0p A OO—p

Figure 1: An accepting run of an ABA for OOpALOO—p over
an infinite sequence of states in which the truth value of p al-
ternates. Double-line ovals are accepting states/conditions.

For the reader unfamiliar with ABAs, the transition func-
tion for these automata takes a state and a symbol and returns
a positive Boolean formula over the set of states Q'. Further-
more, a run of an ABA over an infinite string m = s155...
is characterized by a tree with labeled nodes, in which (in-
formally): (1) the root node is labeled with the initial state,
(2) level ¢ corresponds to the processing of symbol s;, and
(3) the children of a node labeled by ¢ at level ¢ are the states
appearing in a minimal model of §(q, s;). As such, multiple
runs for a certain infinite string are produced when selecting
different models of §(q, s;). A special case is when d0(q, s;)
reduces to T or L, where there is one child labeled by T or
1, respectively. A run of an ABA is accepting iff all of its
finite branches end on T and in each of its infinite branches
there is an accepting state that repeats infinitely often. Fig-
ure 1 shows a run of the ABA for LIOp A JO—p—a for-
mula whose semantics forces an infinite alternation, which
is not necessarily immediate, between states that satisfy p
and states that do not satisfy p.

Our ABA compilation for LTL-FOND follows a similar
approach to that developed by TB15: given an input prob-
lem P, we generate an equivalent problem P’ in which we
represent the configuration of the ABA with fluents (one flu-
ent g per each state ¢ of the ABA). P’ contains the actions in
‘P plus synchronization actions whose objective is to update
the configuration of the ABA. In P’, special fluents alternate
between so-called world mode, in which only one action of
‘P is allowed, and synchronization mode, in which the con-
figuration of the ABA is updated.

Before providing details of the compilation we overview
the main differences between our compilation and that of
TB15. TB15 recognizes an accepting run (i.e., a satisfied
goal) by observing that all automaton states at the last level
of the (finite) run are accepting states. In the infinite case,
such a check does not work. As can be seen in the example
of Figure 1, there is no single level of the (infinite) run that
contains only ABA accepting states.

Thus, when building a plan with our compilation, the
planner “decides” at any moment that an accepting run can
be found and then the objective is to “prove” this is the case
by showing the existence of a loop or lasso in the plan in
which any non-accepting state may turn into an accepting
state. To keep track of those non-accepting states that we

To simplify the explanation we refer to formulae, ¢, rather
than g, as in our definition of 4.

Sync Action | Effect

tr(q;) {~q/. ¢{ — —ai}

tr(gong) {45, 45, ~a5ng dons — {a&, ab , ~airs}}
try (qgvﬁ) {qg: _‘qivl% davp — {qu _‘qgvﬁ}}
tra(aavg) | {45, ~aovss dovs = {a5 ~aius}}
tr(qga) {qav _‘qgou qga — {qgv _‘qga}}
tri(ahus) | {45, ~aSus atus = {ab, ~qhus}}
tra(gSup) | {45, daus—a5up, atus — b}
tr1(gSrs) {45,435, 75 rp, bR — ~0Lr s}
tTQ(qu[;) {qg7qaRﬁ7_'QERﬂuqaRﬁ_>_‘qo¢Rﬁ}
tr1(¢50) {43,450 aba = {0, —aba}}
tr2(qga) {000, 430}

tr(q2a {43, a0, ~aS 0 abe — —abat

Table 2: Synchronization actions. The precondition of
tr(q}) is {sync, ¢}, plus £ when ¢) = £ is a literal.

require to eventually “turn into” accepting states we use spe-
cial fluents that we call rokens.

For an LTL-FOND problem P = (F,Z, ¢, A), where ¢ is
an NNF LTL formula with ABA A, = (Q, %, 0, ¢y, QFin),
the compiled FOND problem is P’ = (F,7',G', A’),
where each component is described below.

Fluents and Actions P’ has the same fluents as P plus
fluents to represent the states of automata Fp = {qy |
gy € Q}, and flags copy, sync, world for control-
ling the different modes. It also includes the set FS =

{¢7 | a4 € Q} which are copies of the automata flu-
ents, and tokens I z{qg | ¢» € Q}. We describe
both sets below. Formally, F/ = F U Fg U Fg U Fg U

{copy, sync, world, goal}. The set of actions A’ is the
union of the sets A,, and A plus the continue action.

World Mode A, contains the actions in A with precon-
ditions modified to allow execution only in world mode. Ef-
fects are modified to allow the execution of the copy action,
which initiates the synchronization phase, described below.
Formally, A,, = {a’ | a € A}, and forall ¢’ in A,, Pre, =
Prey, U {world}, and Eff ,, = Eff , U {copy, ~world}.

Synchronization Mode This mode has three phases. In
the first phase, the copy action is executed, adding a copy ¢°
for each fluent g that is currently true, deleting g. Intuitively,
q° defines the state of the automaton prior to synchroniza-
tion. The precondition of copy is {copy}, while its effect
is: {g — {¢°,~q} | ¢ € Fo} U {sync, ~copy}.

When the sync fluent becomes true, the second phase of
synchronization begins. Here the only executable actions
are those that update the state of the automaton, as defined
in Table 2. These actions update the state of the automaton
following the definition of the transition function, ¢.

Additionally, each synchronization action for 1) with an
associated token qi, propagates such a token to its subfor-
mulae, unless ¥ corresponds to either an accepting state (i.e.,
1 is of the form aR 3) or to a literal £ whose truth can be
verified with respect to the current state via action tr(qes ).

When no more synchronization actions are possible, we
enter the third phase of synchronization. Here only two ac-
tions are executable: world and continue. The objective



of the world action is to reestablish world mode. Its pre-
condition is {sync} U {—¢® [¢° € F§}, and its effect is
{world, —sync}.

The continue action also reestablishes world mode, but
in addition “decides” that an accepting ABA can be reached
in the future. This is reflected by the non-deterministic ef-
fect that makes the fluent goal true. As such, it “tokenizes”
all states that are not final states in Fgy, by adding ¢ for
each ABA state g that is non-final and currently true. For-
mally, the precondition of continue is {sync} U {=¢] |

¢ & Qrin}, and its effect is {{goal},{g, — ¢} | ¢ ¢
Qrin}t U {world, -sync}}. The set A, contains the ac-
tions copy, world, and all actions defined in Table 2.

Initial and Goal States The resulting problem P’ has ini-
tial state I’ = I U {q.,, copy}, and goal G’ = {goal}.

Our ABA-based compilation builds on TB15 while inte-
grating ideas from PLG13. Like PLG13 our compilation
uses a continue action to find plans with lassos, but un-
like PLG13, our compilation does not directly use the ac-
cepting configuration of the automaton. Rather, the planner
“guesses” that such a configuration can be reached. The to-
ken fluents Fg , which did not exist in TB15, are created for
each non-accepting state and can only be eliminated when a
non-accepting ABA state becomes accepting.

The ABA-based compilation produces a FOND problem,
P’. Tt is straightforward to generate an FSC for P from
a strong cyclic policy for P’ via simulation, removing ex-
plicit mention of automata fluents and synchronization ac-
tions. following our description in (Camacho et al. 2016).

Throughout the paper, soundness guarantees that FSCs
obtained from solutions to the compiled problem P’ are so-
lutions to the LTL-FOND problem P. Similarly, complete-
ness guarantees that if a solution exists for P, then one exists
for P’. Following (Torres and Baier 2015), Theorem 1 estab-
lishes that the size of the ABA-based compilation is linear in
the size of the LTL formula. Linear size is preserved at the
expense of losing completeness of the ABA-based approach.

Theorem 1. The ABA-based compilation for Infinite LTL-
FOND is linear in the size of the goal formula.

Theorem 2. The ABA-based approach to Infinite LTL-
FOND is sound.

Proof sketch. A policy p’ for P’ yields three types of execu-
tions: (1) finite executions that end in a state where goal is
true, (2) infinite executions in which the continue action is
executed infinitely often and (3) infinite, unfair executions.
‘We do not need to consider (3) because of Definition 2. Be-
cause the precondition of continue does not admit token flu-
ents, if continue executes infinitely often we can guarantee
that any state that was not an ABA accepting state turns into
an accepting state. This in turn means that every branch of
the run contains an infinite repetition of final states. Sound-
ness of our approach reuses most of the argument that TB15
uses to show their compilation is sound, and follows from
the argument above, the soundness of the FOND planner,
and the straightforward construction of the FSC. [

As we can see in the definition of J, the progression of
subformuae v of the form o V 8, a' U 3, and a R 3 involves

a disjunction of subformulae. In our compilation, the syn-
chronization actions make a deterministic choice, and com-
mit to satisfy one of the disjuncts in the progression of the
automata fluent gy, while forgetting about the other disjunct.
The advantage of making these deterministic choices is that
the size of the compilation becomes worst-case linear in the
size of the formula. The downside, however, is that the
compilation is not always complete — although soundness
is maintained — because the progressions of the subformulae
may not capture all accepting runs of the automaton.

By way of illustration, consider a problem with unique ac-
tion, a, with no preconditions, and non-deterministic effects
that either make p true or false. Consider the subformula
1) = Op V O—p. The progression of v, following Table 2,
either commits to make p true in the next time step, or to
make —p true in the next time step. Despite the fact that ¢
is a tautology and there exists a trivial strategy that satisfies
1, the compiled problem has no solution. Intuitively, the
completeness guarantees of the compilation is lost when the
part that is forgotten talks about future time steps. However,
our compilations are complete when either v = a V § and
one of « or 3 is a literal, or v» = o U 3 and both « and (5 are
literals (similarly with a release operator).

Theorem 3. The ABA-based approach to Infinite LTL-
FOND is complete when, for all subformulae 1 in sub(y):

e ifip =« V f, then either o or (B are formulae that do not
contain temporal operators

o ify = alUp, oryp = aRp then a and 8 are formulae
that do not contain temporal operators

Proof sketch. When the disjuncts of the progression of ¢ do
not contain temporal operators, the truth of the deterministic
choice made by synchronization actions is evaluated in the
current state and does not depend on any effect of future
actions. This makes it possible to consume subformulae of
the type y = aU B andy = aRS. If v = aV 5, it suffices
that one of «, or 8 does not contain temporal operators. The
completeness of our approach reuses most of the argument
that TB15 uses to show their compilation is complete, and
follows from the discussion above, the completeness of the
FOND planner, and the construction of the FSC. O

3.1.2 NBA-based Compilation Our NBA-based compila-
tion relies on the construction of a non-deterministic Biichi
automaton (NBA) for the goal formula, and builds on com-
pilation techniques for finite LTL planning with determinis-
tic actions developed by Baier and Mcllraith (2006) (hence-
forth, BM06). Given a deterministic planning problem P
with LTL goal ¢, the BMO6 compilation runs in two phases:
first, ¢ is transformed into a non-deterministic finite-state
automata (NFA), A, such that it accepts a finite sequence
of states o if and only if o = . In the second phase, it
builds an output problem P’ that integrates the dynamics of
the NBA within the planning domain. Informally, the dy-
namics alternate, sequentially, between world and synchro-
nization modes.



Fluents and Actions P’ has the same fluents as in P plus
additional fluents of the form ¢, ¢” for each state g of A,
and flags world, sync for controlling the different modes.
Formally, F' = F U Fg U Fg U {world, sync}, where
Fg ={¢“ | q€Q} anng = {¢" | ¢ € Q}. The set of
actions A’ is the union of the sets A,, and A;.

World Mode A, = {da’ | a € A} contains the ac-
tions in .4 with preconditions and effects modified as fol-
lows. The preconditions of a’ allow execution only in world
mode. Formally, for each a € A, a’ we have o’ € A, with
Pre, = Pre, U {world}. Effects are modified in two
ways. First, they delete world and add copy to force transi-
tion to the synchronization phase, described below. Second,
they may contain additional conditional effects which model
the dynamics of the automaton 4,. These conditional ef-
fects update the truth of the automaton fluents ¢© and ¢”,
for each ¢ € (), following the same logic used by in the
BMO06 compilation to update fluents [y, one per automaton
state ¢ € () — this time, applied to non-deterministic actions
as we perform in the NFA-based compilation presented be-
low.

Synchronization Mode This mode has two actions,
world and continue, that the planner can choose to reestab-
lish the world mode. Both actions have precondition
{sync} and effects {world, —sync}. Below we describe
additional preconditions and effects, if existing.

The world action has additional effects that update the
automaton fluents as follows. For each accepting state ¢ €
Q rin, a conditional effect g7 — {qc, ﬂqT} that recognises
that a family runs of the automaton has visited an accepting
state.

The continue action has an additional precondition
Vicorn @ vV €0 qT. This precondition guarantees that,
between two executions of the action continue, at least one
family of automaton runs have visited an accepting state.
The continue action is non-deterministic. The effects of one
outcome adds the dummy goal fluent {goal}. The effects
in the other outcome have two functions. First, they prune
from search all families of runs of A, that have not visited
an accepting state since the last execution of continue. This
is performed by the conditional effects q7 — {ﬁqT}, one
for each ¢ € Q \ Qrin. Second, it requests that the fami-
lies of automaton runs that have not been pruned will visit
an accepting state eventually. This is performed by the con-
ditional effects ¢¢ — {qT7 —|qc}, for each ¢ € @ (note
that the automaton fluents g7, for each ¢ € Qp;p, remain
unchanged).

Initial and Goal States The resulting problem P’ has ini-
tial state I’ = I U {¢” | ¢ € Qpin} U {world}, and goal
G’ = {goal}.

For an LTL-FOND problem P = (F,Z,¢,A), our
NBA-based compilation constructs a FOND problem P’ =
(F',T',G’, A’) via the following three phases: (i) construct
an NBA, A, for the NNF LTL goal formula ¢, (ii) apply
the modified BMO06 compilation to the determinization of P
(see Section 2.1), and (iii) construct the final FOND problem
P’ by undoing the determinization, i.e., reconstruct the non-

robot.at ?R1

robot.at ?R1
start — @

Figure 2: NBA of the LTL formula CJQrobot_at 7R1.

(:action move_effl
:parameters (?from ?to)
:precondition (robot_at ?from)
:effect (and (robot_at ?to) (not (robot_at ?from))

(when (and (autstate_g0) (or (= ?to R1)
(and (robot_at R1) (not (= ?from R1)))))
(autstate_ql))

(when (or (not (autstate_g0)) (and (not (= ?to R1l))
(or (not (robot_at R1l)) (= ?from R1))))

(not (autstate_gl)))))

(:action move_eff2
:parameters (?from ?to)
:precondition (robot_at ?from)
:effect (and
(when (and (autstate_g0) (robot_at R1))
(autstate_ql))
(when (or (not (autstate_g0)) (not (robot_at R1))
(not (autstate_qgl))))))

Figure 3: BMO06 compilation of the determinization of the
action move of the Robot example.

deterministic actions from their determinized counterparts.

As an illustrative example, consider the problem where
a robot that navigates between rooms has to patrol room
R1 infinitely often. The associated LTL goal formula is
OOrobot_at 7R1, which compiles into the NBA in Figure
2. The robot is initially in room RO. It can perform the action
move to attempt to move to a desired room. In case of failure,
the robot stays where it is. Figure 3 shows the two deter-
ministic actions, move_effl and move_eff2, that result from
the BM06 compilation of the determinization of the action
move. Both (parametrized) actions have the same precondi-
tions. The angelic non-determinism of the automaton is en-
coded within the dynamics of the actions, so that transitions
capture all runs of the automaton. The non-determinism
of the environment can be reconstructed by joining the two
deterministic actions into a single, non-deterministic action
with the same precondition and two non-deterministic ef-
fects: the effects of actions move_effl and move_eff2.

The modification of the BM06 compilation used in the
second phase leverages ideas present in PLG13 and our
ABA-based compilations to capture infinite runs via in-
duced non-determinism. The NFA-based compilation uses
continue_q actions, one for each accepting automata flu-
ent F,, whose precondition is {F,}. As with the ABA-
based compilations, the continue_q actions have one non-
deterministic effect that achieves goal, while the other
forces the search for infinite plans by requiring the planner to
perform at least one world action. This is ensured by adding
an extra precondition to continue_q, can_continue, which



is true in the initial state, is made true by every action but
continue_q, and is deleted by continue_q. The other effect
deletes all the automata fluents except g. Le., Eff .o tinue g=
{{goal}, {F, — —Fy, | ¢ # ¢} U{can_continue}}.

Theorem 4. The NBA-based compilation for Infinite LTL-
FOND planning is worst-case exponential in the size of the
goal formula.

Theorem 5. The NBA-based approach to Infinite LTL-
FOND planning is sound and complete.

Proof sketch. Soundness follows from the following argu-
ment. Execution of a strong-cyclic solution yields an infinite
plan where the continue action appears infinitely often. The
preconditions of continue requires a family of runs of the
automaton to have visited an accepting state since the last
execution of continue, and prunes those families of runes
that have not satisfied such requirement. As such, the infi-
nite plan yields a run of the automaton that visits accepting
states infinitely often.

Completeness follows from the following argument.
First, we observe that if there exists a solution, then there
exists one solution that has the form of a policy as a func-
tion of the planning state plus the automaton fluents. Let 7
be such a policy. We will see that 7 can be explored in the
unfolding of a search tree within the dynamics of the prob-
lem. Let h be an infinite plan execution of . The idea is
that we can simulate the plan execution of h within the dy-
namics of the problem, using world actions until we reach
an state such that all the automaton runs that finish in au-
tomaton fluents g7 can not be progressed into an automa-
ton fluent in F, g by advancing in the simulation of h. At
this point, we can apply continue, and we may continue the
simulation of & in the outcome of continue that is not the
dummy goal state. Note that we have the guarantee that we
have not pruned from search any relevant family of runs of
the NBA (because those can only visit a finite number of
accepting states). We can explore prefixes of different plan
executions until we reach a fixed point in which we have
visited all reachable states (augmented with automaton flu-
ents) by 7. At this point, we must have found a strong-cyclic
solution to the problem. [

The transformation of LTL into NBA is worst-case expo-
nential. Theorems 4 and 5 follow from soundness and com-
pleteness of the BM06 compilation, this time using an NBA
automaton, and an argument similar to that of Theorem 2.
This time, if continue_q actions execute infinitely often we
can guarantee accepting NBA states are reached infinitely
often. Similar to the AA-based approach, an FSC can be
easily constructed from a strong-cyclic solution to P.

3.2 From Finite LTL-FOND to FOND

Our compilations for Finite LTL-FOND extend the BMO06
and TB15 compilations, originally designed for finite LTL
planning with deterministic actions, to the non-deterministic
action setting. Both the original BM06 and TB15 compi-
lations share two general steps. In step one, the LTL goal
formula is transformed into an automaton/automata — in the
case of BMO06 an NFA, in the case of TB15, an AA. In step
two, a planning problem P’ is constructed by augmenting

‘P with additional fluents and action effects to account for
the integration of automata. In the case of BM06, these cap-
ture the automata state and how domain actions update au-
tomata state. In the case of TB15, P must also be augmented
with synchronization actions. In both compilations, problem
goals are augmented with automata accepting states.

For LTL-FOND, BM06 and TB15 must be modified to
account for non-deterministic action effects. We do so in a
manner similar to the previous NBA- and ABA-based com-
pilations. In particular, the LTL-FOND problem is deter-
minized, the BMO06 (resp. TB15) compilation is applied to
the determinized problem, and then the non-deterministic
actions are reconstructed from their determinized counter-
parts (as done in the NBA-based compilation) to produce the
FOND problem, P’. An FSC solution, II, to the LTL-FOND
problem P, can be obtained from a solution to P’.

The size of the NFA- and AA-based compilations fol-
low, respectively, from the sizes of the BM06 and TB15
compilations. Likewise, soundness and completeness of the
compilation-based approaches follow from the soundness
and completeness of BM06 and TB15, and similar argu-
ments applied in the proofs of Theorems 2, 3, and 5.

Theorem 6. The NFA-based (resp. AA-based) compilation
for Finite LTL-FOND is exponential (resp. linear) in the size
of the goal formula.

Theorem 7. The NFA-based approach to Finite LTL-FOND
is sound and complete.

Theorem 8. The AA-based approach to Finite LTL-FOND
is sound, and is complete under the Theorem 3 conditions.

4 Experiments

We evaluated our approaches to LTL-FOND planning in a
selection of benchmarks with LTL goals from (Baier and
Mcllraith 2006; Patrizi, Lipovetzky, and Geffner 2013; Tor-
res and Baier 2015), modified to include non-deterministic
actions. We used PRP (Muise, Mcllraith, and Beck 2012) as
the FOND planner. Experiments were conducted on an In-
tel Xeon E5-2430 machine running at 2.2GHz, using a 4GB
memory limit and a 30-min timeout.

LTL-FOND Planning over Finite Traces We evaluated
the performance of our NFA- and AA-based planning sys-
tems, with respect to a collection of problems with deter-
ministic and non-determinisitic actions and LTL goals, in-
terpreted on finite traces. NFA-based compilation run times
increased when the LTL formula had a large number of con-
junctions and nested modal operators, whereas AA-based
compilation times remain negligible. However, the compi-
lations with AA included a number of new fluents that were,
in some cases, up to one order of magnitude larger than
with NFA (Figures 4a and 4b). Problems compiled with AA
are, in general, more difficult to solve (Figure 4c). Because
this compilation is incomplete, some problems are unsolv-
able. We report these cases as timeouts, even though PRP
was able to detect unsolvability at pre-process time. AA-
based compilations introduce a number of synchronization
actions, resulting in greater policies than those obtained with
NFA (Figure 5d). When these actions are excluded from
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Figure 4: Performance of our planning system using AA-
and NFA-based compilations in problems with determinis-
tic and non-deterministic actions and finite LTL goals. The
NFA-based approach demonstrates superior performance.

the count, as per counting the size of the resulting FSCs,
we get similar numbers. As a crude estimate of plan qual-
ity, we compared the number of world actions (i.e., exclud-
ing automaton-state synchronization actions) in the shortest
plans of the policies (Figure 4e). The number of world ac-
tions with this metric was very similar in both compilations.

Interestingly, despite the AA-based compilations are not
complete in theory, they were able to solve the majority of
problems with a variety of LTL goal formulae. In addi-
tion, despite the size of the AA-based compilations is linear
in the size of the original LTL formula and NFA compila-
tions are worst-case exponential, in practice we observed the
size of the NFA-based compiled problems is smaller. Fur-
ther, PRP performs better when problems are compiled us-
ing NFAs, generating similar quality policies in lower search
run times. We did not experience any decrease in perfor-
mance in deterministic problems that were extended with
non-deterministic actions, suggesting that AA- and NFA-
based compilations remain competitive in LTL-FOND.

LTL-FOND Planning over Infinite Traces The relative
performance observed between our NBA- and ABA-based
approaches for LTL-FOND planning, interpreted over infi-
nite traces, is reflective of the finite case. For reference,
we compared the performance of FOND planning in our
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Figure 5: Performance of our planning system using ABA-
based compilations in problems with non-deterministic ac-
tions and infinite LTL goals. Our system demonstrates com-
parable performance with the PLG13 approach.

ABA-based compilations with the so-called sequential and
parallel compilations developed by Patrizi, Lipovetzky, and
Geftner (2013), subsequently referred to as PLG13seq and
PLG13par, respectively. The former alternates between
world and sync actions (that update the automaton state),
whereas the latter parallelizes this process in a single action.
The current implementation of PLG13 compilations forced
us to limit the comparison to the three domains that appear in
(Patrizi, Lipovetzky, and Geftner 2013). Namely, the Waldo,
Lift, and Clerk domains. All problems have LTL goals that
can be compiled into deterministic Biichi automata.

The results of experiments are summarized in Figure 5.
We report PRP run times (sec) and policy sizes, excluding
synchronization actions. In Waldo problems, the planner
run times using ABA-based compilations are situated be-
tween the run times with PLG13seq and PLG13par. In Lift
problems, the ABA compilations demonstrate significantly
greater scalability. The Lift problems contain a (increasing)
large number of conjunctive LTL goals. We conjecture that
the poor scalability with PLG13seq (runs out of time) and
PLG13par (runs out of memory) compilations is due to the
bad handling of conjunctive goals, that results in a expo-
nentially large number of different state transitions. On the
other hand, PRP handles conjunctive goals much better in
the ABA compilations thanks to the AA progression of the
LTL formula. In the Clerk problems, the run times of ev-
ery approach increases exponentially with the problem size.
PRP scales slightly worse with the ABA compilation than
with the PLG13seq and PLG13par compilations, which can
solve 1 and 2 more problems respectively.

Figure 5d compares the size of the policies found by PRP
to problems compiled with ABA and PLGI13par compila-
tions. PLGI13seq compilations resulted in slightly larger
policies, due to separate world and sync action phases. We
account only for world actions, excluding synchronization
actions from the count. Policy sizes with ABA-based compi-
lations are similar, but consistently smaller than those from



PLG13par compilations, except in the Lift problems where
the former results in considerably smaller policies. Finally,
we evaluated the validity of our approach with LTL goals
that could not be handled by PLG13. In particular, we solved
Waldo problems with goals of the form ¢Ula.

Collectively, our systems advance the state of the art in
LTL-FOND for finite and infinite traces, providing compa-
rable or superior performance to previous LTL-FOND plan-
ning methods, while supporting the full expressivity of LTL.

S Summary and Discussion

We have proposed four compilation-based approaches to
FOND planning with LTL goals that are interpreted over
either finite or infinite traces. The compilations based on
non-deterministic automata collectively capture the full ex-
pressivity of LTL for finite and infinite traces and are worst-
case exponential in size relative to the LTL. The correspond-
ing LTL-FOND approaches are sound and complete and do
not manifest this exponential property in practice, likely
due to our encoding optimizations. The approaches based
on non-deterministic automata consistently provide superior
performance relative to all other approaches. Our two com-
pilations based on alternating automata are linear in size.
The corresponding LTL-FOND approaches are sound and
incomplete for both the finite and infinite cases. To obtain
completeness we would have lost the linear properties of the
compilation. Since this restricted but linear compilation was
already inferior to our non-deterministic approach, we did
not include our complete approach. These compilations ad-
dress a number of important open problems in FOND plan-
ning with LTL, as summarized in Table 1.

Our LTL planning techniques are directly applicable to
a number of real-world planning problems as well as cap-
turing a diversity of applications beyond standard planning,
including but not limited to genomic rearrangement (Uras
and Erdem 2010), story generation (Haslum 2012), busi-
ness process management (De Giacomo et al. 2014), veri-
fication (Albarghouthi, Baier, and Mcllraith 2009; Patrizi et
al. 2011), and robot motion planning (Plaku 2012).

While LTL is effective for expressing many goals and con-
straints, some goals are better described procedurally, using
regular expressions. The EAGLE goal language (Lago, Pi-
store, and Traverso 2002; Shaparau, Pistore, and Traverso
2008) and variants of the Golog language (e.g., (Baier, Fritz,
and Mcllraith 2007)) are prominent among attempts to sup-
port planning with action-centric procedural control/goals
using regular expressions. Triantafillou, Baier, and Mcll-
raith (2015) combine LTL with regular expression to plan
with goals specified in linear dynamic logic (LDL).

Finally, we observe that LTL-FOND is related to LTL syn-
thesis (Pnueli and Rosner 1989). Informally, it is the prob-
lem of computing a policy that satisfies an LTL formula,
assuming that an adversary may change some fluents after
the execution of each action. Recently De Giacomo and
Vardi (2015) showed how to map a Finite LTL-FOND prob-
lem into a synthesis problem. An open question is whether
existing planning technology can be used for LTL synthesis,
where the environment is inherently unfair.
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