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Abstract

Temporally extended goals are critical to the specification of
a diversity of real-world planning problems. Here we exam-
ine the problem of planning with temporally extended goals
over both finite and infinite traces where actions can be non-
deterministic, and where temporally extended goals are speci-
fied in linear temporal logic (LTL). Unlike existing LTL plan-
ners, we place no restrictions on our LTL formulae beyond
those necessary to distinguish finite from infinite trace in-
terpretations. We realize our planner by compiling tempo-
rally extended goals, represented in LTL, into Planning Do-
main Definition Language problem instances, and exploit-
ing a state-of-the-art fully observable non-deterministic plan-
ner to compute solutions. The resulting planner is sound and
complete. Our approach exploits the correspondence between
LTL and automata. We propose several different compila-
tions based on translations of LTL to (Büchi) alternating or
non-deterministic finite state automata, and evaluate various
properties of the competing approaches. We address a diverse
spectrum of LTL planning problems that, to this point, had not
been solvable using AI planning techniques. We do so while
demonstrating competitive performance relative to the state
of the art in LTL planning.

1 Introduction
Most real-world planning problems involve complex goals
that are temporally extended, require adherence to safety
constraints and directives, necessitate the optimization of
preferences or other quality measures, and/or require or may
benefit from following a prescribed high-level script that
specifies how the task is to be realized. In this paper we focus
on the problem of planning for temporally extended goals,
constraints, directives or scripts that are expressed in Linear
Temporal Logic (LTL) for planning domains in which ac-
tions can have non-deterministic effects, and where LTL is
interpreted over either finite or infinite traces.

Planning with deterministic actions and LTL goals has
been well studied, commencing with the works of Bacchus
and Kabanza (2000) and Doherty and Kvarnström (2001).
Significant attention has been given to compilation-based
approaches (e.g., (Rintanen 2000; Cresswell and Codding-
ton 2004; Edelkamp 2006; Baier and McIlraith 2006; Pa-
trizi et al. 2011)), which take a planning problem with an
LTL goal and transform it into a classical planning prob-
lem for which state-of-the-art classical planning technology

can often be leveraged. The more challenging problem of
planning with non-deterministic actions and LTL goals has
not been studied to the same extent; Kabanza, Barbeau, and
St.-Denis (1997), and Pistore and Traverso (2001) have pro-
posed their own LTL planners, while Patrizi, Lipovetzky, and
Geffner (2013) have proposed the only compilation-based
approach that exists. Unfortunately, the latter approach is
limited to the proper subset of LTL for which there exists
a deterministic Büchi automata. In addition, it is restricted
to the interpretation of LTL over infinite traces and the com-
pilation is worst-case exponential in the size of the goal for-
mula.

In this paper, we propose a number of compilation-based
approaches for LTL planning with non-deterministic actions.
Specifically, we present two approaches for LTL planning
with non-deterministic actions over infinite traces and two
approaches for LTL planning with non-deterministic actions
over finite traces1. In each case, we exploit translations
from LTL to (Büchi) alternating or non-deterministic finite
state automata. All of our compilations are sound and com-
plete and result in Planning Domain Definition Language
(PDDL) encodings suitable for input to standard fully ob-
servable non-deterministic (FOND) planners. Our compila-
tions based on alternating automata are linear in time and
space with respect to the size of the LTL formula, while
those based on non-deterministic finite state automata are
worst-case exponential in time and space (although opti-
mizations in the implementation avoid this in our experi-
mental analysis).

Our approaches build on methods for finite LTL planning
with deterministic actions by Baier and McIlraith (2006)
and Torres and Baier (2015), and for the infinite non-
deterministic case, on the work of Patrizi, Lipovetzky, and
Geffner (2013). While in the finite case the adaptation of
these methods was reasonably straightforward, the infinite
case required non-trivial insights and modifications to Torres
and Baier’s approach. We evaluate the relative performance
of our compilation-based approaches using state-of-the-art
FOND planner PRP (Muise, McIlraith, and Beck 2012),
demonstrating that they are competitive with state-of-the-art
LTL planning techniques.

1Subtleties relating to the interpretation of LTL over finite
traces are discussed in (De Giacomo and Vardi 2013).



Our work presents the first realization of a compilation-
based approach to planning with non-deterministic actions
where the LTL is interpreted over finite traces. Furthermore,
unlike previous approaches to LTL planning, our compila-
tions make it possible, for the first time, to solve the com-
plete spectrum of FOND planning with LTL goals inter-
preted over infinite traces. Indeed, all of our translations
capture the full expressivity of the LTL language. Table 1
summarizes existing compilation-based approaches and the
contributions of this work. Our compilations enable a di-
versity of real-world planning problems as well as support-
ing a number of applications outside planning proper rang-
ing from business process analysis, and web service com-
position to narrative generation, automated diagnosis, and
automated verification. Finally and importantly, our com-
pilations can be seen as a practical step towards the ef-
ficient realization of a class of LTL synthesis tasks us-
ing planning technology (e.g., (Pnueli and Rosner 1989;
De Giacomo and Vardi 2015)). We elaborate further with
respect to related work in Section 5.

2 Preliminaries
2.1 FOND Planning
Following Ghallab, Nau, and Traverso (2004), a Fully Ob-
servable Non-Deterministic (FOND) planning problem con-
sists of a tuple 〈F , I,G,A〉, where F is a set of proposi-
tions that we call fluents, I ⊆ F characterizes what holds
in the initial state; G ⊆ F characterizes what must hold
for the goal to be achieved. Finally A is the set of actions.
The set of literals of F is Lits(F) = F ∪ {¬f | f ∈ F}.
Each action a ∈ A is associated with 〈Prea,Eff a〉, where
Prea ⊆ Lits(F) is the precondition and Eff a is a set of out-
comes of a. Each outcome e ∈ Eff a is a set of conditional
effects, each of the form (C → `), where C ⊆ Lits(F) and
` ∈ Lits(F). Given a planning state s ⊆ F and a fluent
f ∈ F , we say that s satisfies f , denoted s |= f iff f ∈ s.
In addition s |= ¬f if f 6∈ s, and s |= L for a set of literals
L, if s |= ` for every ` ∈ L. Action a is applicable in state s
if s |= Prea. We say s′ is a result of applying a in s iff, for
some e in Eff a, s′ is equal to s \ {p | (C → ¬p) ∈ e, s |=
C} ∪ {p | (C → p) ∈ e, s |= C}. The determinization
of a FOND problem 〈F , I,G,A〉 is the planning problem
〈F , I,G,A′〉, where each non-deterministic action a ∈ A is
replaced by a set of deterministic actions, ai, one action cor-
responding to each of the distinct non-deterministic effects
of a. Together these deterministic actions comprise the set
A′.

Solutions to a FOND planning problem P are policies. A
policy p is a partial function from states to actions such that
if p(s) = a, then a is applicable in s. The execution of a pol-
icy p in state s is an infinite sequence s0, a0, s1, a1, . . . or
a finite sequence s0, a0, . . . , sn−1, an−1, sn, where s0 = s,
and all of its state-action-state substrings s, a, s′ are such
that p(s) = a and s′ is a result of applying a in s. Finite ex-
ecutions ending in a state s are such that p(s) is undefined.
An execution σ yields the state trace π that results from re-
moving all the action symbols from σ.

Alternatively, solutions to P can be represented by means

of finite-state controllers (FSCs). Formally, a FSC is a tu-
ple Π = 〈C, c0,Γ,Λ, ρ,Ω〉, where C is the set of controller
states, c0 ∈ C is the initial controller state, Γ = S is the
input alphabet of Π, Λ = A is the output alphabet of Π,
ρ : C × Γ→ C is the transition function, and Ω : C → Λ is
the controller output function (cf. (Geffner and Bonet 2013;
Patrizi, Lipovetzky, and Geffner 2013)). In a planning state
s, Π outputs action Ω(ci) when the controller state is ci.
Then, the controller transitions to state ci+1 = ρ(ci, s

′) if
s′ is the new planning state, assumed to be fully observ-
able, that results from applying Ω(ci) in s. The execution
of a FSC Π in controller state c (assumed to be c = c0)
and state s is an infinite sequence s0, a0, s1, a1, . . . or a fi-
nite sequence s0, a0, . . . , sn−1, an−1, sn, where s0 = s, and
such that all of its state-action-state substrings si, ai, si+1

are such that Ω(ci) = ai, si+1 is a result of applying ai in
si, and ci+1 = ρ(ci, si). Finite executions ending in a state
sn are such that Ω(cn) is undefined. An execution σ yields
the state trace π that results from removing all the action
symbols from σ.

Following Geffner and Bonet (2013), an infinite execution
σ is fair iff whenever s, a occurs infinitely often within σ,
then so does s, a, s′, for every s′ that is a result of applying
a in s. A solution is a strong cyclic plan for 〈F , I,G,A〉 iff
each of its executions in I is either finite and ends in a state
that satisfies G or is (infinite and) unfair.

2.2 Linear Temporal Logic
Linear Temporal Logic (LTL) was first proposed for verifica-
tion (Pnueli 1977). An LTL formula is interpreted over an in-
finite sequence, or trace, of states. Because the execution of
a sequence of actions induces a trace of planning states, LTL
can be naturally used to specify temporally extended plan-
ning goals when the execution of the plan naturally yields an
infinite state trace, as may be the case in non-deterministic
planning.

In classical planning –i.e. planning with deterministic ac-
tions and final-state goals–, plans are finite sequences of
actions which yield finite execution traces. As such, ap-
proaches to planning with deterministic actions and LTL
goals (e.g., (Baier and McIlraith 2006)), including the
Planning Domain Definition Language (PDDL) version 3
(Gerevini and Long 2005), use a finite semantics for LTL,
whereby the goal formula is evaluated over a finite state
trace. De Giacomo and Vardi (2013) formally described and
analyzed such a version of LTL, which they called LTLf ,
noting the distinction with LTL (De Giacomo, Masellis, and
Montali 2014).
LTL and LTLf allow the use of modal operators next (),

and until (U ), from which it is possible to define the well-
known operators always () and eventually (). LTLf , in
addition, allows a weak next () operator. An LTLf formula
over a set of propositions P is defined inductively: a propo-
sition in P is a formula, and if ψ and χ are formulae, then
so are ¬ψ, (ψ ∧ χ), (ψUχ), ψ, and ψ. LTL is defined
analogously.

The semantics of LTL and LTLf is defined as follows. For-
mally, a state trace π is a sequence of states, where each
state is an element in 2P . We assume that the first state in π



Infinite LTL Finite LTL
Deterministic Actions Non-Deterministic Actions Deterministic Actions Non-Deterministic Actions
[Albarghouthi et al., 2009] (EXP)
[Patrizi et al., 2011] (EXP)

[Patrizi et al., 2013] (limited LTL) (EXP)
[this paper (BAA)] (LIN)
[this paper (NBA)] (EXP)

[Edelkamp, 2006] (EXP)
[Cresswell & Coddington, 2006] (EXP)
[Baier & McIlraith, 2006] (EXP)
[Torres & Baier, 2015] (LIN)

[this paper (NFA)] (EXP)
[this paper (AA)] (LIN)

Table 1: Automata-based compilation approaches for LTL planning. (EXP): worst case exponential. (LIN): linear.

is s1, that the i-th state of π is si and that |π| is the length
of π (which is∞ if π is infinite). We say that π satisfies ϕ
(π |= ϕ, for short) iff π, 1 |= ϕ, where for every natural
number i ≥ 1:

• π, i |= p, for a propositional variable p ∈ P , iff p ∈ si,
• π, i |= ¬ψ iff it is not the case that π, i |= ψ,

• π, i |= (ψ ∧ χ) iff π, i |= ψ and π, i |= χ,

• π, i |= ϕ iff i < |π| and π, i+ 1 |= ϕ,

• π, i |= (ϕ1 Uϕ2) iff for some j in {i, . . . , |π|}, it holds
that π, j |= ϕ2 and for all k ∈ {i, . . . , j − 1}, π, k |= ϕ1,

• π, i |= ϕ iff i = |π| or π, i+ 1 |= ϕ.

Observe operator  is equivalent to  iff π is infinite.
Therefore, henceforth we allow  in LTL formulae, we do
not use the acronym LTLf , but we are explicit regarding
which interpretation we use (either finite or infinite) when
not obvious from the context. As usual, ϕ is defined as
(trueUϕ), and ϕ as ¬¬ϕ. We use the release operator,
defined by (ψ Rχ)

def
= ¬(¬ψU¬χ).

2.3 LTL, Automata, and Planning
Regardless of whether the interpretation is over an infinite
or finite trace, given an LTL formula ϕ there exists an au-
tomata Aϕ that accepts a trace π iff π |= ϕ. For infi-
nite interpretations of ϕ, a trace π is accepting when the
run of (a Büchi non-deterministic automata) Aϕ on π vis-
its accepting states infinitely often. For finite interpreta-
tions, π is accepting when the final automata state is ac-
cepting. For the infinite case such automata may be ei-
ther Büchi non-deterministic or Büchi alternating (Vardi and
Wolper 1994), whereas for the finite case such automata
may be either non deterministic (Baier and McIlraith 2006)
or alternating (De Giacomo, Masellis, and Montali 2014;
Torres and Baier 2015). Alternation allows the generation
of compact automata; specifically,Aϕ is linear in the size of
ϕ (both in the infinite and finite case), whereas the size of
non-deterministic (Büchi) automata is worst-case exponen-
tial.

These automata constructions have been exploited in de-
terministic and non-deterministic planning with LTL via
compilation approaches that allow us to use existing plan-
ning technology for non-temporal goals. The different state
of the art automata-based approaches for deterministic and
FOND LTL planning are summarized in Table 1. Patrizi,
Lipovetzky, and Geffner (2013) present a Büchi automata-
based compilation for that subset of LTL which relies on the
construction of a Büchi deterministic automata. It is a well-
known fact that Büchi deterministic automata are not equiv-

alent to Büchi non-deterministic automata, and thus this last
approach is applicable to a limited subset of LTL formulae.

3 FOND Planning with LTL Goals
An LTL-FOND planning problem is a tuple 〈F , I, ϕ,A〉,
where F , I, andA are defined as in FOND problems, and ϕ
is an LTL formula. Solutions to an LTL-FOND problem are
FSCs, as described below.

Definition 1 (Finite LTL-FOND). An FSC Π is a solution
for 〈F , I, ϕ,A〉 under the finite semantics iff every execu-
tion of Π over I is such that either (1) it is finite and yields a
state trace π such that π |= ϕ or (2) it is (infinite and) unfair.

Definition 2 (Infinite LTL-FOND). An FSC Π is a solution
for 〈F , I, ϕ,A〉 under the infinite semantics iff (1) every ex-
ecution of Π over I is infinite and (2) every fair (infinite)
execution yields a state trace π such that π |= ϕ.

Below we present two general approaches to solving LTL-
FOND planning problems by compiling them into standard
FOND problems. Each exploits correspondences between
LTL and either alternating or non-deterministic automata,
and each is specialized, as necessary, to deal with LTL inter-
preted over either infinite (Section 3.1) or finite (Section 3.2)
traces. We show that FSC representations of strong-cyclic
solutions to the resultant FOND problem are solutions to the
original LTL-FOND problem. Our approaches are the first to
address the full spectrum of FOND planning with LTL inter-
preted over finite and inifinte traces. In particular our work
is the first to solve full LTL-FOND with respect to infinite
trace interpretations, and represents the first realization of a
compilation approach for LTL-FOND with respect to finite
trace interpretations.

3.1 From Infinite LTL-FOND to FOND
We present two different approaches to infinite LTL-FOND
planning. The first approach exploits Büchi alternating au-
tomata (BAA) and is linear in time and space with respect to
the size of the LTL formula. The second approach exploits
Büchi non-deterministic automata (NBA), and is worst-case
exponential in time and space with respect to the size of the
LTL formula. Nevertheless, as we see in Section 4, the sec-
ond compilation does not exhibit this worst-case complexity
in practice, generating high quality solutions with reduced
compilation run times and competitive search performance.

3.1.1 A BAA-based Compilation Our BAA-based com-
pilation builds on ideas by Torres and Baier (2015) for al-
ternating automata (AA) based compilation of finite LTL
planning with deterministic actions (henceforth, TB15), and
from Patrizi, Lipovetzky, and Geffner’s compilation (2013)



(henceforth, PLG13) of LTL-FOND to FOND. Combining
these two approaches is not straightforward. Among other
reasons, TB15 does not yield a sound translation for the in-
finite case, and thus we needed to modify it significantly.
This is because the accepting condition for BAAs is more
involved than that of regular AAs.

The first step in the compilation is to build a BAA for our
LTL goal formula ϕ over propositions F , which we hence-
forth assume to be in negation normal form (NNF). Trans-
forming an LTL formula ϕ to NNF can be done in linear
time in the size of ϕ. The BAA we use below is an adapta-
tion of the BAA by Vardi (1995). Formally, it is represented
by a tupleAϕ = (Q,Σ, δ, qϕ, QFin), where the set of states,
Q, is the set of subformulae of ϕ, sub(ϕ) (including ϕ), Σ
contains all sets of propositions in P , QFin = {αRβ ∈
sub(ϕ)}, and the transition function, δ is given by:

δ(`, s) =

{
> if s |= ` (`, literal)
⊥ otherwise

δ(α ∧ β, s) = δ(α, s) ∧ δ(β, s)
δ(α, s) = α

δ(α ∨ β, s) = δ(α, s) ∨ δ(β, s)
δ(αUβ, s) = δ(β, s) ∨ (δ(α, s) ∧ αUβ)

δ(αRβ, s) = δ(β, s) ∧ (δ(α, s) ∨ αRβ)

As a note for the reader unfamiliar with BAAs, the transi-
tion function for these automata takes a state and a sym-
bol and returns a positive Boolean formula over the set of
statesQ. Furthermore, a run of a BAA over an infinite string
π = s1s2 . . . is characterized by a tree with labeled nodes,
in which (informally): (1) the root node is labeled with the
initial state, (2) level i corresponds to the processing of sym-
bol si, and (3) the children of a node labeled by q at level
i are the states appearing in a minimal model of δ(q, si).
As such, multiple runs for a certain infinite string are pro-
duced when selecting different models of δ(q, si). A spe-
cial case is when δ(q, si) reduces to > or ⊥, where there is
one child labeled by > or ⊥, respectively. A run of a BAA
is accepting iff all of its finite branches end on > and in
each of its infinite branches there is an accepting state that
repeats infinitely often. Figure 1 shows a run of the BAA
for p ∧¬p—a formula whose semantics forces an
infinite alternation, which is not necessarily immediate, be-
tween states that satisfy p and states that do not satisfy p.

In our BAA translation for LTL-FOND we follow a simi-
lar approach to that developed in the TB15 translation: given
an input problem P , we generate an equivalent problem P ′
in which we represent the configuration of the BAA with
fluents (one fluent q per each state q of the BAA). P ′ con-
tains the actions in P plus additional synchronization ac-
tions whose objective is to update the configuration of the
BAA. InP ′, there are special fluents to alternate between so-
called world mode, in which only one action ofP is allowed,
and synchronization mode, in which the configuration of the
BAA is updated.

Before providing details of the translation we overview
the main differences between our translation and that of
TB15. TB15 recognizes an accepting run (i.e., a satisfied

p ∧¬p

p

p

p

p

>

¬p

¬p

¬p ¬p

p

>

. . . . . .

Figure 1: An accepting run of a BAA for p ∧ ¬p
over an infinite sequence of states in which the truth
value of p alternates. Double-line ovals are accepting
states/conditions.

Sync Action Effect
tr(qS` ) {¬qS` , qT` → ¬qT` }
tr(qSα∧β) {qSα , qSβ ,¬qSα∧β , qTα∧β → {qTα , qTβ ,¬qTα∧β}}
tr1(q

S
α∨β) {qSα ,¬qSα∨β , qTα∨β → {qTα ,¬qTα∨β}}

tr2(q
S
α∨β) {qSβ ,¬qSα∨β , qTα∨β → {qTβ ,¬qTα∨β}}

tr(qSα) {qα,¬qSα, qTα → {qTα ,¬qTα}}
tr1(q

S
αU β) {qSβ ,¬qSαU β , q

T
αU β → {qTβ ,¬qTαU β}}

tr2(q
S
αU β) {qSα , qαU β ,¬qSαU β , q

T
αU β → qTα}

tr1(q
S
α R β) {qSβ , qSα ,¬qSα R β , q

T
α R β → ¬qTα R β}

tr2(q
S
α R β) {qSβ , qα R β ,¬qSα R β , q

T
α R β → ¬qTα R β}

tr1(q
S
α) {qSα ,¬qSα, qTα → {qTα ,¬qTα}}

tr2(q
S
α) {qα,¬qSα}

tr(qSα) {qSα , qα,¬qSα, qTα → ¬qTα}

Table 2: Synchronization actions. The precondition of
tr(qSψ) is {sync, qSψ}, plus ` when ψ = ` is a literal.

goal) by observing that all automaton states at the last level
of the (finite) run are accepting states. In the infinite case,
such a check does not work. As can be seen in the exam-
ple of Figure 1, there is no single level of the (infinite) run
that only contains final BAA states. Thus, when building a
plan with our translation, the planner is given the ability to
“decide” at any moment that an accepting run can be found
and then the objective is to “prove” this is the case by show-
ing the existence of a loop or lasso in the plan in which any
non-accepting state may turn into an accepting state. To keep
track of those non-accepting states that we require to even-
tually “turn into” accepting states we use special fluents that
we call tokens.

For an LTL-FOND problemP = 〈F , I, ϕ,A〉, where ϕ is
an NNF LTL formula with BAA Aϕ = (Q,Σ, δ, qϕ, QFin),
the translated FOND problem is P ′ = 〈F ′, I ′,G′,A′〉,
where each component is described below.
Fluents P ′ has the same fluents as P plus fluents for
the representation of the states of the automaton FQ =
{qψ | ψ ∈ Q}, and flags copy, sync, world for con-
trolling the different modes. Finally, it includes the set
FSQ = {qSψ | ψ ∈ Q} which are copies of the automata
fluents, and tokens FTQ = {qTψ | ψ ∈ Q}. We describe
both sets below. Formally, F ′ = F ∪ FQ ∪ FSQ ∪ FTQ ∪
{copy, sync,world,goal}.

The set of actions A′ is the union of the sets Aw and As
plus the continue action.



World Mode Aw contains the actions in A with precon-
ditions modified to allow execution only in world mode. Ef-
fects are modified to allow the execution of the copy action,
which initiates the synchronization phase, described below.
Formally, Aw = {a′ | a ∈ A}, and for all a′ in Aw:

Prea′ = Prea ∪ {world},
Eff a′ = Eff a ∪ {copy,¬world}.

Synchronization Mode This mode has three phases. In
the first phase, the copy action is executed, adding a copy qS
for each fluent q that is currently true, deleting q. Intuitively,
qS defines the state of the automaton prior to synchroniza-
tion. The precondition of copy is {copy}, while its effect
is:

Eff copy = {q → {qS ,¬q} | q ∈ FQ} ∪ {sync,¬copy}
As soon as the sync fluent becomes true, the second

phase of synchronization begins. Here the only executable
actions are those that update the state of the automaton,
which are defined in Table 2. These actions update the state
of the automaton following the definition of the transition
function, δ. In addition, each synchronization action for a
formula ψ that has an associated token qTψ , propagates such
a token to its subformulae, unless ψ corresponds to either an
accepting state (i.e., ψ is of the form αRβ) or to a literal `
whose truth can be verified with respect to the current state
via action tr(qS` ).

When no more synchronization actions are possible, we
enter the third phase of synchronization. Here only two ac-
tions are executable: world and continue . The objective of
world action is to reestablish world mode. Its precondition
is {sync} ∪ FSQ , and its effect is {world,¬sync}.

The continue action also reestablishes world mode, but
in addition “decides” that an accepting BAA can be reached
in the future. This is reflected by the non-deterministic effect
that makes the fluent goal true. As such, it “tokenizes” all
states that are not final states in FQ, by adding qT for each
BAA state q that is non-final and currently true. Formally,

Precontinue = {sync} ∪ {¬qTϕ | ϕ 6∈ QFin}
Eff continue = {{goal},

{qϕ → qTϕ | ϕ 6∈ QFin} ∪ {world,¬sync}}
The set As is defined as the one containing actions copy,

world, and all actions defined in Table 2.
Initial and Goal States The resulting problem P ′ has ini-
tial state I ′ = I ∪ {qϕ, copy} , and goal G′ = {goal}.

In summary, our BAA-based approach builds on TB15
while integrating ideas from PLG13. Like PLG13 our ap-
proach uses a continue action to find plans with lassos, but
unlike PLG13, our translation does not directly use the ac-
cepting configuration of the automaton. Rather, the planner
“guesses” that such a configuration can be reached. The to-
ken fluents FTQ , which did not exist in TB15, are created for
each non-accepting state and can only be eliminated when a
non-accepting BAA state becomes accepting.

Now we show how, given a strong cyclic policy for P ′,
we can generate an FSC for P . Observe that every state ξ,

which is a set of fluents in F ′, can be written as the disjoint
union of sets sw = ξ ∩ F and sq = ξ ∩ (F ′ \ F ). Abusing
notation, we use sw ∈ 2F to represent a state in P . For a
planning state ξ = sw ∪ sq green in which p(ξ) is defined,
we define Ω(ξ) to be the action in A whose translation is
p(ξ). Recall now that executions of a strong-cyclic policy p
for P ′ in state ξ generate plans of the form a1α1a2α2 . . .
where each ai is a world action in Aw and αi are sequences
of actions inA′ \Aw. Thus Ω(ξ) can be generated by taking
out the fluents world and copy from the precondition and
effects of p(ξ). If state s′w is a result of applying Ω(ξ) in
sw, we define ρ(ξ, s′w) to be the state ξ′ that results from the
composition of consecutive non-world actions α1 mandated
by an execution of p in s′w ∪ sq . Despite non-determinism in
the executions, the state ξ′ = ρ(ξ, s′w) is well-defined.

The BAA translation for LTL-FOND is sound and com-
plete. Throughout the paper, the soundness property guaran-
tees that FSCs obtained from solutions to the compiled prob-
lem P ′ are solutions to the LTL-FOND problem P , whereas
the completeness property guarantees that a solution to P ′
exists if one exists for P .
Theorem 1. The BAA translation for Infinite LTL-FOND
planning is sound, complete, and linear in the size of the
goal formula.

A complete proof is not included but we present some
of the intuitions our proof builds on. Consider a policy p′
for P ′. p′ yields three types of executions: (1) finite execu-
tions that end in a state where goal is true, (2) infinite ex-
ecutions in which the continue action is executed infinitely
often and (3) infinite, unfair executions. We do not need to
consider (3) because of Definition 2. Because the precondi-
tion of continue does not admit token fluents, if continue
executes infinitely often we can guarantee that any state that
was not a BAA accepting state turns into an accepting state.
This in turn means that every branch of the run contains an
infinite repetition of final states. The plan for P , p, is ob-
tained by removing all synchronization actions from p′, and
the FSC that is solution to P is obtained as described above.
In the other direction, a plan p′ for P ′ can be built from a
plan p for P by adding synchronization actions. Theorem
1 follows from the argument given above and reuses most
of the argument that TB15 uses to show their translation is
correct.

3.1.2 An NBA-based Compilation This compilation re-
lies on the construction of a non-determinisitic Büchi au-
tomaton (NBA) for the goal formula, and builds on trans-
lation techniques for finite LTL planning with determinis-
tic actions developed by Baier and McIlraith (2006) (hence-
forth, BM06). Given a deterministic planning problem P
with LTL goal ϕ, the BM06 translation runs in two phases:
first, ϕ is transformed into a non-deterministic finite-state
automata (NFA), Aϕ, such that it accepts a finite sequence
of states σ if and only if σ |= ϕ. In the second phase, it
builds an output problem P ′ that contains the same fluents
as in P plus additional fluents of the form Fq , for each state
q of Aϕ. Problem P ′ contains the same actions as in P but
each action may contain additional effects which model the
dynamics of the Fq fluents. The goal of P ′ is defined as the



disjunction of all fluents of the form Ff , where f is an ac-
cepting state of Aϕ. The initial state of P ′ contains Fq iff
q is a state that Aϕ would reach after processing the initial
state of P . The most important property of BM06 is the fol-
lowing: let σ = s0s1 . . . sn+1 be a state trace induced by
some sequence of actions a0a1 . . . an in P ′, then Fq is satis-
fied by sn+1 iff there exists a run of Aϕ over σ that ends in
q. This means that a single sequence of planning states en-
codes all runs of the NFA Aϕ. The important consequence
of this property is that the angelic semantics ofAϕ is imme-
diately reflected in the planning states and does not need to
be handled by the planner (unlike TB15).

For LTL-FOND problem P = 〈F , I, ϕ,A〉, our NBA-
based compilation constructs a FOND problem P ′ =
〈F ′, I ′,G′,A′〉 via the following three phases: (i) construct
an NBA,Aϕ for the NNF LTL goal formula ϕ, (ii) apply the
modified BM06 translation to the determinization of P (see
Section 2.1) , and (iii) construct the final FOND problem P ′
by undoing the determinization, i.e., reconstruct the original
non-deterministic actions from their determinized counter-
parts. More precisely, the translation of a non-deterministic
action a in P is a non-deterministic action a′ in P ′ that is
constructed by first determinizing a into a set of actions, ai
that correspond to each of the non-deterministic outcomes
of a, applying the BM06-based translation to each ai to
produce a′i, and then reassembling the a′is back into a non-
deterministic action, a′. In so doing, Eff a′ is the set of out-
comes in each of the deterministic actions a′i, and Prea′ is
similarly the precondition of any of these a′i.

The modification of the BM06 translation used in the
second phase leverages ideas present in PLG13 and our
BAA-based compilations to capture infinite runs via induced
non-determinism. In particular, it includes a continue ac-
tion whose precondition is the accepting configuration of
the NBA (a disjunction of the fluents representing accepting
states). Unlike our BAA-based compilation, the tokeniza-
tion is not required because accepting runs are those that
achieve accepting states infinitely often, no matter which
ones. As before, one non-deterministic effect of continue
is to achieve goal, while the other is to force the planner
to perform at least one action. This is ensured by adding
an extra precondition to continue , can continue, which
is true in the initial state, it is made true by every action but
continue , and is deleted by continue .

In order to construct a solution Π to P from a strong-
cyclic solution p to P ′ = 〈F ′, I ′,G′,A′〉, it is useful to rep-
resent states ξ in P ′ as the disjoint union of s = ξ ∩ F and
q = ξ ∩ (F ′ \F ). Intuitively, s represents the planning state
in P , and q represents the automaton state. The controller
Π = 〈C, c0,Γ,Λ, ρ,Ω〉 is defined as follows. c0 = I ′ is the
initial controller state; Γ = 2F ; Λ = A; ρ(ξ, s′) = s′ ∪ q′,
where q′ is the automaton state that results from applying ac-
tion p(ξ) in ξ; Ω(ξ) = p(ξ); and C ⊆ 2F

′
is the domain of

p. Actions in P ′ are non-deterministic and have conditional
effects, but the automaton state q′ that results from applying
action p(ξ) in state ξ = s ∪ q is deterministic, and thus ρ is
well-defined.

Theorem 2. The NBA translation for Infinite LTL-FOND

planning is sound, complete, and worst-case exponential in
the size of the LTL formula.

Theorem 2 follows from soundness, completeness, and
the complexity of the BM06 translation, this time using a
NBA automaton, and an argument similar to that of The-
orem 1. This time, if continue executes infinitely often we
can guarantee accepting NBA states are reached infinitely
often.

3.2 From Finite LTL-FOND to FOND

Our approach to finite LTL-FOND extends the BM06 and
TB15 translations, originally intended for finite LTL plan-
ning with deterministic actions, to the non-deterministic ac-
tion setting. Both the original BM06 and TB15 translations
share two general steps. In step one, the LTL goal formula is
translated to an automaton/automata – in the case of BM06
an NFA, in the case of TB15, an AA. In step two, a planning
problem P ′ is constructed by augmenting P with additional
fluents and action effects to account for the integration of
the automaton. In the case of BM06 these capture the state
of the automaton and how domain actions cause the state of
the automaton to be updated. In the case of the TB15 trans-
lation, P must also be augmented with synchronization ac-
tions. Finally, in both cases the original problem goals must
be modified to capture the accepting states of automata.

When BM06 and TB15 are exploited for LTL-FOND, the
non-deterministic nature of the actions must be taken into
account. This is done in much the same as with the NBA-
and BAA-based compilations described in the previous sec-
tion. In particular, non-deterministic actions in the LTL-
FOND problem are determinized, the BM06 (resp. TB15)
translation is applied to these determinized actions, and then
the non-deterministic actions reconstructed from their trans-
lated determinized counterparts (as done in the NBA-based
compilation) to produce FOND problem, P ′. A FSC so-
lution, Π, to the LTL-FOND problem P , can be obtained
from a solution to P ′. When the NFA-based translations
are used, the FSC, Π, is obtained from policy p following
the approach described for NBA-based translations. When
the AA-based translations are used, the FSC, Π, is obtained
from p following the approach described for BAA-based
translations.

Theorem 3. The NFA (resp. AA) translation for Finite LTL-
FOND is sound, complete, and exponential (resp. linear) in
the size of the LTL formula.

Soundness and completeness in Theorem 3 follows from
soundness and completeness of the BM06 and TB15 trans-
lations. Fair executions of Π yield finite plans for P ′, and
therefore state traces (excluding intermediate synchroniza-
tion states) satisfy ϕ. Conversely, our approach is complete
as for every plan in P , one can construct a plan in P ′. Fi-
nally, the run-time complexity and size of the translations is
that of the original BM06 and TB15 translations – worst case
exponential in time and space for the NFA-based approach
and linear in time and space for the AA approach.
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Figure 2: Performance of our planning system using AA-
and NFA-based translations in different problems with deter-
ministic and non-deterministic actions and finite LTL goals.

4 Experiments
We evaluate our framework on a selection of benchmark
domains with LTL goals from (Baier and McIlraith 2006;
Patrizi, Lipovetzky, and Geffner 2013; Torres and Baier
2015), modified to include non-deterministic actions. Ex-
periments were conducted on an Intel Xeon E5-2430 CPU
@2.2GHz Linux server, using a 4GB memory and a 30-
minute time limit.

LTL-FOND Planning over Finite Traces: We evaluated
the performance of our BM06 (NFA) and TB15 (AA) trans-
lators, with respect to a collection of problems with deter-
ministic and non-determinisitic actions and LTL goals, inter-
preted on finite traces. We used the state-of-the-art FOND
planner, PRP (Muise, McIlraith, and Beck 2012), to solve
the translated problems. NFA-based translation times in-
creased when the LTL formula had a large number of con-
junctions and nested modal operators, whereas AA-based
translation times remain negligible. However, the AA trans-
lation included a number of new fluents that were, in some
cases, up to one order of magnitude larger than with the NFA
(Figures 2a and 2b). This seems to translate into more com-
plex problems, as PRP run times become almost consistently
greater in problems translated with AA (Figure 2c). The size
of the policies obtained from the AA compilations were con-
siderably greater than those obtained with NFA compila-

0 5 10 15 20 25 30 35 40
0
5

10
15
20
25
30
35
40
45

BAA

PLG13par

PLG13seq

(a) Run-time in Waldo problems.

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10
BAA

PLG13par

PLG13seq

(b) Run-time in Lift problems.

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120
BAA

PLG13par

PLG13seq

(c) Run-time in Clerk problems.

100 101 102 103 104 105

BAA

100

101

102

103

104

105

P
LG

1
3
p
a
r

Waldo

Clerk

Lift Orig

(d) Policy Size (world actions).

Figure 3: Performance of our planning system using BAA-
based translations in different LTL-FOND domains. We re-
port PRP run-times (in seconds) and policy sizes, excluding
synchronization actions.

tions (Figure 3d). This is expected, as AA translations in-
troduce a number of synchronization actions, whereas the
number of actions in NFA translations remains unchanged.
To assess the quality of the plans obtained from each transla-
tion, we compared the number of world actions (i.e., exclud-
ing automaton-state synchronization actions) in the shortest
plans of the policies obtained (Figure 2e). This is a crude es-
timator of the quality of plans, since these plans are not nec-
essarily the ones that minimize the number of world actions,
as they also contain synchronization actions. The number
of world actions that we obtained in both compilations was
very similar.

Interestingly, whereas the size of the AA translations is
linear in the size of the original LTL formula and NFA
translations are worst-case exponential, in practice we ob-
served the size of the NFA-based translated problems is
smaller. Furthermore, PRP performs better when problems
are compiled using NFAs, generating similar quality poli-
cies in lower search run-times.

We didn’t experience any untoward decrease in perfor-
mance in deterministic problems that were extended with
non-deterministic actions, suggesting that AA- and NFA-
based translations remain competitive in LTL-FOND.

LTL-FOND Planning over Infinite Traces: The rela-
tive performance observed between NBA- and BAA-based
translations for LTL-FOND planning, interpreted over in-
finite traces, is reflective of the finite case. NBA trans-
lation run times are greater, but result in lower plan-
ner run times and smaller policy sizes. For reference, we
compared BAA translations with the so-called sequential
and parallel translations developed by Patrizi, Lipovetzky,
and Geffner (2013), subsequently referrd to as PLG13seq
and PLG13par, respectively. The former alternates between
world and sync actions (that update the automaton state),



whereas the latter parallelizes this process in a single action.
The current implementation of PLG13 translations forced us
to perform such comparisons only in the three domains that
appear in (Patrizi, Lipovetzky, and Geffner 2013). Namely,
the Waldo, Lift, and Clerk domains. All problems have LTL
goals that can be compiled into deterministic Büchi au-
tomata. Unfortunately, we could not include a fair compari-
son with NBA translations in the Lift and Clerk domains, due
to a specific encoding that forced transitions to synchroniza-
tion phases (existing in PLG13 and BAA translations, but
not in NBA). In the Waldo problems, however, NBA trans-
lations generated smaller solutions (by a half) with roughly
half the run time required by BAA. On the other hand, NBA
translation times timed out after the twelfth instance (possi-
bly due to an unoptimized implementation of the translator).

The Waldo problems require construction of a controller
for a robot that moves around n rooms and finds Waldo
infinitely often. Waldo may or may not appear in the n-
th and n/2-th rooms when these are visited. The dynam-
ics of the problem preclude visiting a room twice before
visiting the remaining ones, in which case the predicate
search again becomes true. The LTL goal of the prob-
lem is search again ∨Waldo. The Lift problems re-
quires construction of a controller for an n-floor building
that serves all requests. The dynamics of the problem re-
quire alternation between move and push fi actions, i =
1, . . . , n. Fluents ati and reqi model, respectively, whether
the lift is at the i-th floor, and whether a request from the
i-th floor has been issued and not served. The lift can only
move up if some request is issued. The push fi actions non-
deterministically request the lift to service the i-th floor. Ini-
tially, the lift is at floor 1, and no request is issued. The LTL
goal of the problem is ϕ =

∧n
i=1 (reqi → ati). Finally,

the Clerk problems require construction of a controller that
serves all clients in a store. Clients can order one of n pack-
ages pi . If the package is not available, the clerk has to buy
it from a supplier, pick it up, and store it in its correct lo-
cation. In order to serve the client, the clerk has to find the
package, pick it up, and sell it. The LTL goal of the problem
is (active request →(item served ∨ item stored)).

The results of experiments are summarized in Figure
3. In Waldo problems, the planner run times using BAA-
based translations are situated between the run times with
PLG13seq and PLG13par. In Lift problems, the BAA trans-
lations demonstrate significantly greater scalability. The Lift
problems contain a (increasing) large number of conjunc-
tive LTL goals. We conjecture that the poor scalability with
PLG13seq (runs out of time) and PLG13par (runs out of
memory) translations is due to the bad handling of conjunc-
tive goals, that results in a exponentially large number of
different state transitions. On the other hand, the PRP han-
dles conjunctive goals much better in the BAA translations
thanks to the AA progression of the LTL formula. In the
Clerk problems, PRP scales slightly worse with the BAA
translation than with the PLG13seq and PLG13par transla-
tions, which can solve 1 and 2 more problems respectively.
The run times with all translations seem to show the same
exponential trend, and differ in a small offset that corre-
sponds to the increase in problem complexity.

Figure 3d compares the size of the policies found by PRP
to problems compiled with BAA and PLG13par translations.
PLG13seq translations resulted in slightly larger policies,
due to separate world and sync action phases. We account
only for world actions, excluding synchronization actions
from the count. Policy sizes with BAA-based translations are
similar, but consistently smaller than those from PLG13par
translations, except in the Lift problems where the former re-
sults in considerably smaller policies. Finally, we evaluated
the validity of our system with LTL goals that could not be
handled by PLG13. In particular, we solved Waldo problems
with goals of the form α.

Overall, our system proves very competitive with (as good
as or better than) the previous state-of-the-art LTL-FOND
planning methods, while supporting a much broader spec-
trum (the full spectrum) of LTL formulae.

5 Summary and Discussion
We have proposed four compilation-based approaches to
fully observable non-deterministic planning with LTL goals
that are interpreted over either finite or infinite traces. These
compilations support the full expressivity of LTL, in contrast
to much existing work. In doing so, we address a number of
open problems in planning with LTL with non-deterministic
actions, as noted in Table 1. Our LTL planning techniques
are directly applicable to a number of real-world planning
problems that are not captured by existing systems. Further-
more they are useful in a diversity of applications beyond
standard planning, including but not limited to genomic re-
arrangement (Uras and Erdem 2010), program test genera-
tion (Razavi, Farzan, and McIlraith 2014), story generation
(Haslum 2012), automated diagnosis (Grastien et al. 2007;
Sohrabi, Baier, and McIlraith 2010), business process man-
agement (De Giacomo et al. 2014) and verification (Al-
barghouthi, Baier, and McIlraith 2009; Patrizi et al. 2011).

We evaluated the effectiveness of our FOND compilations
using the state-of-the-art FOND planner, PRP. An interest-
ing observation is that our worst-case exponential NFA-
based translations run faster and return smaller policies than
the AA-based linear translations. This seems to be due to
the larger number of fluents (and actions) required in the
AA-based translations. Compared to the existing approach
of (Patrizi, Lipovetzky, and Geffner 2013), experiments in-
dicate that our approaches scale up better.

Finally, we observe that LTL-FOND is related to the prob-
lem of LTL synthesis (Pnueli and Rosner 1989). Informally,
it is the problem of computing a policy that satisfies an
LTL formula, assuming that an adversary (which we can as-
sociate to the non-deterministic environment) may change
some fluents after the execution of each action. Recently
De Giacomo and Vardi (2015) showed how to map a fi-
nite LTL-FOND problem into a synthesis problem. Sardiña
and D’Ippolito (2015) go further, showing how FOND plans
can be synthesized using LTL synthesis algorithms. An open
question is whether any existing planning technology can be
used for LTL synthesis as well. LTL synthesis is not an in-
stance of strong cyclic FOND planning since synthesis ad-
versaries are not fair.
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