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Abstract
Agents can be thought of as following a social be-
haviour, depending on the context in which they are
interacting. We devise a computationally grounded
mechanism to represent and reason about others in
social terms, reflecting the local perspective of an
agent (first-person view), to support both stereotyp-
ical and empathetic reasoning. We use a hierarchy
of agent models to discriminate which behaviours
of others are plausible, and decide which behaviour
for ourselves is socially acceptable, i.e. conforms
to the social context. To this aim, we investigate
the implications of considering agents capable of
various degrees of theory of mind, and discuss a
scenario showing how this affects behaviour.

1 Introduction
Performance in many complex systems depends on the co-
ordinated activity of a team of individuals, often charac-
terised by complex decision tasks in rapidly evolving envi-
ronment, where explicit communication may be limited. Re-
search in Team Performance suggests that human teams co-
ordinate activities more effectively and achieve better overall
task performance when team members manage to track each
other’s beliefs, intentions and task-related states [Klimoski
and Mohammed, 1994; Mohammed et al., 2010; Espevik
et al., 2011]. This intuition was captured by the notion of
shared Mental Models and team Mental Models [Johnson-
Laird, 1983; Cannon-Bowers et al., 1993; Bolstad and Ends-
ley, 1999]. The idea is that information is organised in struc-
tured patterns and processed in a rapid and flexible manner,
to describe, explain and predict the system behaviour as well
as the ramifications of potential decisions prior to action.

Moreover, various degrees of rich interactions depend not
only on such ability to represent mental models (to attribute
beliefs, desires, pretending, etc., to oneself and others), but
also to understand that others have mental states that are
different from one’s own. This is often called theory of
mind (ToM) [Premack and Woodruff, 1978; Scassellati, 2002;
Isaac and Bridewell, 2014], and it is a widely studied phe-
nomenon in many disciplines [Bergwerff et al., 2014; Ficici
and Pfeffer, 2008]. The ability to take the perspective of oth-
ers is crucial, and studies of human-robot interaction and so-

cial robotics identify the need for a human-oriented percep-
tion [Lemaignan et al., 2010; Warnier et al., 2012].

Also in the context of agent systems, we have seen in re-
cent years a growing demand of more realistic social behavior
[Kaminka, 2013; Dignum et al., 2014], so one critical fea-
ture becomes the ability to represent others in social terms.
Giving agents an awareness of their social reality will enable
more seamless interdependent collective behaviour [Dignum
et al., 2014; Johnson et al., 2014], where interdependency
informally means that one agent’s deliberation is dependent
on what another agent does (or intends to do), and vice-versa.
We therefore need to investigate computational structures that
allow agents to reason not just about themselves, but also
about the so-called social reality [Dignum et al., 2014].

There has been considerable work on the design of in-
telligent agents and reasoning about their own knowledge
and belief as well as that of others – e.g., [Levesque, 1984;
Lakemeyer, 1986; Fagin et al., 1995; Wooldridge and Lo-
muscio, 2001; Ditmarsch et al., 2007] – typically for devising
some form of strategy, or plan, to achieve goals. In real-life
scenarios, however, agents must deal with a high degree of
uncertainty, and although humans routinely interact success-
fully in limited cue conditions, this process requires complex,
often multimodal, exchange of information. A critical per-
spective has thus to be assumed, one that can discern what is
plausible from what is not. Existing work, e.g. [Bulling and
Jamroga, 2007; Andersen et al., 2014], assumes that plausible
traces are given as part of the model, rather than constructed.

The contribution of this paper is:

• a representation of the model that agents have of each
other, and their nested beliefs. An agent can use its own
model for itself, yet use different representations and in-
ference mechanisms for others. It can simulate others to
deliberate, empowering interdependence and awareness.
• a computational mechanism to use these representations

to discriminate which behaviours of others are plausible,
given the context, and decide which behaviour for our-
selves is socially acceptable (conforms to the context).

Crucially, we preserve an agent’s local perspective (first-
person view), instead of considering an omniscient observer
(third-person view). We support two types of reasoning about
others: stereotypical reasoning, using simple social rules, and
empathetic reasoning, in which the agent casts itself into the



mind of another agent and reasons as if it were them.
In Section 2 we present a running scenario. In Section 3,

we introduce our notion of agent models, and in Section 4
we model our scenario in this framework. In Section 5 we
formally define the two types of reasoning above, and in Sec-
tion 6 we give our definition of acceptable behaviour, given a
social context. In Section 7 we comment on future work.

2 The Wumpus Quest
In recent work (e.g., [Bergwerff et al., 2014; Ficici and Pf-
effer, 2008]) authors studied agents with the cognitive abil-
ity to use of the ToM, in (possibly iterated) one-step games.
Here, we present a scenario attempting to bring together some
strategic and social features, inspired by the Wumpus Hunt:

The lord of a castle is informed by a peasant that a Wumpus
is dwelling in a dungeon nearby. It is known that the Wumpus
can be killed by one hunter alone only if asleep; if awake, two
hunters are required. The lord then tasks the peasant to go
to fetch the White Knight, his loyal champion, and hunt down
the beast together. The White Knight is known for being irrep-
rehensible, trustworthy and brave; however, the peasant does
not know any knight, and neither their looks. While looking
for the White Knight, he runs into the Black Knight and, be-
lieving him the White Knight, tells him about the quest.

There is some additional information that needs to be taken
into account: on one hand, the knight knows how a Wum-
pus can be killed by two hunters, but he is aware that a sim-
ple peasant may get scared by the thought of confronting an
awake Wumpus. Also, the peasant can not hunt and is unable
to see whether the Wumpus is awake (he can not approach
unnoticed), but the knight can. Therefore it is not clear to
him whether the peasant can be of any help to the quest. On
the other hand, the knight is aware of the misunderstanding:
he knows that the peasant attributes to him all the good qual-
ities of the White Knight, so the peasant is confident that the
knight won’t put him in danger whenever possible.

The implicit and explicit information of this scenario does
not allow a unique understanding of the context, and it is not
clear how each agent can use such information.

While on the road, they agree on a protocol: they will enter
the dungeon from two sides, and the Knight will use a whistle
to signal whether the Wumpus is awake, then they will attack.

3 Agent models
To allow one agent to reason about others in a social context,
we provide agents with agent (mental) models. An agent is
able to assign such models to others and itself (from some
fixed collection), so when considering all possible eventu-
alities, it is capable of determining its behaviour based on
plausible estimates of others’ behaviour. These models can
be used in orthogonal ways: they can describe either spe-
cific agents, or agents of which the role, in the present con-
text, is more characterising than their intimate understanding.
This is the case, for example, of a bank clerk or policeman,
who can be modeled as members of a reference group (role
or archetype) [Dignum et al., 2014]. This latter representa-
tion is akin to the stereotypical reasoning of humans, who
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Figure 1: Example of setA for concrete labelsAg = {1, 2, 3}

do not necessarily engage in deep cognitive thinking about
others, but rely on habits and social practices [Brooks, 1991;
Dignum et al., 2014]. Manipulations of these models and
stereotypes enable shortcuts to be taken [Pfau et al., 2014].

Models are therefore partial and task-specific: a com-
plete description of an individual, even when possible, would
force us to consider numerous irrelevant details [Mccarthy,
1992]. Instead, models can be specialised to characterise
different levels of approximation, depending on the context.
Although we do not address a specific application domain
for our framework, we nonetheless identify its applicability
to human-agent teamwork, in which the social context can
be considered to design agents capable of using, or simulat-
ing, human-like bounded reasoning. For example, in domains
where plausible estimates of others come from training (e.g.
firefighters), previous interactions (e.g. cognitive assistants
for pilots), and social practices (e.g. sports events).

Consider a set of concrete agent labels Ag = {1, . . . , n}.
Let A be the set of virtual agent labels, obtained by con-
catenating labels in Ag, such that the first is unique. For
instance, if Ag = {1, 2, 3}, then A can be a subset of
{1, 11, 12, 13, 111, . . .}, as informally represented in Figure
1. We will use these indices to refer to the representation that
each agent has of others. E.g., agent 121 denotes the rep-
resentation, according to agent 1, that 2 has of 1 itself. For
simplicity, we use a tree representation, and will make use of
a tree terminology. We will informally refer to the agent at
the root as “reasoning agent”.

Given i, j ∈ A, we write j ∈ ch(i) iff j = i · Ag (j is a
child of i), and i = pa(j) denotes that i is the parent of j. We
regard concatenated labels as regular agent labels, i.e., we re-
fer toA instead of Ag, and we assume thatA is prefix-closed
(i.e., if j ∈ A then any ancestor is in A as well). For simplic-
ity, but without loss of generality, we exclude introspective
agents, e.g. 11. Finally, l(i) denotes the last concrete agent
label of i, e.g., l(123) = 3, and l(121) = 1.

Intuitively, an agent model is a finite-state machine, whose
states are called configurations, and transitions are labelled
with observation symbols. This kind of modelling is in line
with much of the literature on knowledge representation for
multi-agent systems [Fagin et al., 1995; Parikh and Ramanu-
jam, 1985], in which the notions of computational local states
are given prominence. All the information an agent has at its
disposal (facts, observations, etc.) is captured in the state re-
lating to the agent in question. Although we opted for an
explicit representation, a rule-based one is also possible.

We denote the unique set of all possible configurations with
C. As we want an agent to be able to represent and reason
about a group Ag, we assume a set of equivalence relations:

∼j : C× C ∀j ∈ Ag ∼0: C× C

such that if c ∼j c
′ then these configurations hold the same



information about agent j, and if c ∼0 c′ then they hold
the same “local information”, i.e. about self and the world.
Hence, c is said to be locally indistinguishable from c′ iff
c ∼0 c

′. These arbitrary relations depend on the specific set
of configurations (e.g. internal language) considered.
Definition 1. Formally, given C, an agent model is a tuple
Mi = 〈Ci,O, τi, ωi, pri, Act, prei〉 where:
• Ci ⊆ C is a finite set of configurations;
• O is a finite alphabet of observations;
• τi ⊆ Ci × Ci is a transition relation: c′ ∈ τi(c) means

that the agent can move from c to c′ by reasoning;
• ωi : Ci ×O → Ci is a transition function: c′ = ωi(c, o)

models the act of registering the received observation
symbol o. Therefore, it is such that c ∼0 c

′;
• pri : C → Ci is a function, termed projection function,

that will be discussed later (see Definition 2);
• Act is a finite set of action labels, and prei : Ci → 2Act

is a function such that α is plausible in c iff α ∈ prei(c).

The function prei is used to model action preconditions,
but also to express plausibility with respect to goals and
known plans, as in BDI agents [Rao and Georgeff, 1991].

Given A and a library M , i.e. a finite set of agent models,
a model assignment is a function R : A → M that assigns a
model to each agent. We can imagine R to capture the present
situation, and we assume it to be fixed. Given R and A, we
call Γ = 〈Mj〉j∈A the context, with Mj = R(j) for each
j. A context captures the perspective of the reasoning agent.
An agent modelMi, together with a configuration c ∈ Ci, is
called mental state, denoted Si = 〈Mi, c〉.

Consider a propositional setting (that we will use in our
scenario) describing an agent’s internal logic with objective
language P . Let L be the language with grammar :

ϕ := ψ | Belj(ϕ) | ¬ϕ
where j ∈ Ag and ψ ∈ P . By writing ϕ, we represent the fact
that the agent in question (say i) believes that formula ϕ is
true, whereasBelj(ϕ) denotes the fact that the agent believes
that agent j believes ϕ. Here, belief refers to a syntactic ob-
ject denoting a fact regarded as true, with no assumed seman-
tic properties. We do not require a belief base to be consistent
or closed under logical implication, as such automaticity may
be overly optimistic representations of real believers.

Then C can be taken as the infinite set of all possible belief
bases over L and, e.g., we can define ∼j to be such that c ∼j

c′ iff {ϕ | Belj(ϕ) ∈ c} = {ϕ | Belj(ϕ) ∈ c′}. Similarly,
c ∼0 c′ iff the set of formulas in c and c′ not of the form
Belj(ϕ), for any j ∈ ch(i) in A, are the same.

For the agent modelMi, Ci can be the set of allowed be-
lief bases according to some syntactic restriction, e.g. size of
belief bases (memory). Also, τi and ωi can model a reason-
ing machinery ∆i, i.e. a set of axioms and deductive rules
that, together with L, characterise a deductive system for i.
This has some similarity with the notion of multilanguage
systems [Giunchiglia and Serafini, 1994] and, in general, with
resource-bounded agents [Alechina and Logan, 2009]. Simi-
larly to the latter, these models can be used to capture agents
with limited computational resources (humans), in which the
cost of deliberation is considered [Isaac and Bridewell, 2014].

Definition 2. Consider two agents i, j such that j ∈ ch(i).
Given a mental state Si = 〈Mi, c〉 for i, the mental state
ascribed to agent j by i is Sj = 〈Mj , prj(c)〉.

We extend the definition to the case where j is not a child
of i by trivially applying a chain of projections. This pro-
jection function allows us to retrieve the configuration that is
currently considered by agent j (its current internal state, ac-
cording to c). For this reason, we impose a constraint on each
prj to agree with the notion of indistinguishability over C:

prj(c) = prj(c
′) if c ∼j c

′

for each j ∈ A. In Section 5 we will make use of ascribed
mental states to define the ability of reasoning as others.

Considering the propositional setting above, we may
choose to have prj(c) := {ϕ | Belj(ϕ) ∈ c} for each j, or
we may define these functions to encode different represen-
tations of beliefs due to terminology or cognitive differences.
Definition 3. A context Γ is complete iff, for each i ∈ A:
(1) for each vector of configurations ~c ∈ ×j∈ch(i)Cj , one for
each child j of i, there exists c ∈ Ci such that prj(c) = ~cj ;
and (2) for each c, c′ ∈ Ci with c 6∼0 c

′, there exists c′′ ∈ Ci

holding the same information about children as c′, and about
i as c. Formally: c′′ ∼0 c and c′′ ∼j c

′ for any j ∈ ch(i).
Γ is complete when any possible vector of configurations,

one for each child, can be captured by a single configuration
of the parent. From now on, we assume a complete Γ.

4 Modeling the Wumpus Quest
Let us consider again the scenario from Section 2. As cus-
tomary in the Wumpus World, the dungeon is represented by
a grid. The Wumpus occupies one cell, and each cell ad-
jacent to this has a stench. When the Wumpus is killed, a
scream can be heard throughout the dungeon. For simplicity,
we do not consider pits and breezes. The set of observation
symbols is O = {s, a, bs, ba, d, sm}. The first two corre-
spond to observing the state of the Wumpus (sleeping and
awake), the second two to the signal from the knight (whether
the Wumpus is awake). d is the observation of the Wum-
pus screaming, and sm of its smell. The set of actions is
Act = {Mv, nil, At,Bs,Ba}, namely move, wait, attack,
and signal that the Wumpus is asleep or awake.

Assuming the propositional setting as in Section 3,
we model the agents’ beliefs with a set of propositions
{bs,ba,W,WA,WS,dead,scared,dec,att}, where bs
and ba represent beliefs about the fact that the agent in ques-
tion received observations bs and ba; W represents the belief
that the position of the Wumpus is known; WA, WS and dead
reprensent beliefs about the state of the Wumpus (awake,
sleeping or dead, respectively); scared, dec, att are be-
lieved if the agent is scared, intends to deceive the other, or is
ready to attack the Wumpus, respectively.

Assume that the reasoning agent is the Black Knight (agent
1). He assigns to himself the model MBK , to agent 12 the
modelMP for the peasants reference group, and to agent 121
the modelMWK . There models are depicted in in Figure 2,
where transitions in each ωi do not have labels, and loops of
the form 〈c, o, c〉 ∈ ωi are omitted. The table lists the config-
urations in C used in the agent models (where CB(·) stands
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Figure 2: The agent modelsMBK ,MP ,MWK , and the set of environment states.

c1: c2: WA c3: WS c4: WA, dec c5: WA, dec c6: WA, bs c7:
WA, Bel2(CB(WS)), CB(att) c8: WA, ba c9: CB(dead) c10:
CB(WA), CB(att) c11: WA, Bel2(Bel1(WA)), Bel2(W) c12: W,
Bel1(WS), bs c13: W, Bel1(WS) c14: W, bs c15: W, ba c16:
scared c17: WA, Bel2(scared), ba c18: WA, Bel2(Bel1(WS)),
Bel2(W), bs c19: W, Bel1(WA) c20: WA, Bel2(Bel1(WA)),
Bel2(W), ba c21: W, Bel1(WA), ba c22: WA, ba, Bel2(W),
Bel2(ba), Bel2(Bel1(CB(att))), Bel2(Bel1(CB(WA))) c23: W,
ba, Bel1(CB(WA)), Bel1(CB(att)) c24: WA, Bel2(Bel1(WS)),
Bel2(W) c25: W c26: WA, Bel2(Bel1(WS)), Bel2(W), dec c27: WA,
Bel2(W) c28: WA, Bel2(W), dec c29: WA, Bel2(W), ¬dec c30:
WA, bs, Bel2(W), Bel2(bs) c31: WA, ba, Bel2(W), Bel2(ba).

for a syntactic representation of common belief). Projections
are defined accordingly. Each configuration corresponds to a
state, and each state is labelled with the set of plausible ac-
tions (here only singletons). Consider for exampleMP . In c1
the peasant has no relevant belief, and only actionMv is plau-
sible. An agent adhering to this model will keep moving until
the smell observation is received (transition 〈c1, sm, c25〉).
When this happens, the peasant will wait for a signal. If ba
is received, then the next configuration c15 contemplates two
courses of thought: 〈c15, c16〉 and 〈c15, c10〉. In the first case
the peasant will wait indefinitely (scared); otherwise it will at-
tack. The rest of the configurations were omitted for brevity.
Unreachable configurations will become reachable via empa-
thetic reasoning, as we see in the next section. For instance,
if the current mental state of agent 1 is S1 = 〈MBK , c11〉,
then S12 = 〈MP , c19〉 and S121 = 〈MWK , c2〉.

To model any concrete example, we need to first define our
notion of environment. A (nondeterministic) environment is:

E = 〈E, e0, γ, perc〉

where E is a finite set of environment states; e0 ∈ E is the
initial state; γ = E × Act|Ag| × E is a transition relation;
perc : E × Ag → O is an observation function that returns
an observation o for each agent in Ag. As customary [Fagin
et al., 1995; Parikh and Ramanujam, 1985; Wooldridge and
Lomuscio, 2001], E is used to represent the physical world.

Assume that the dungeon is as in the right side of Figure 2
(states e0-e8: we restrict its size for simplicity, and we con-
sider only one position of the Wumpus). E.g., e0 represents
the situation when both hunters are outside; e3 the one in
which the Wumpus is asleep and the Knight signaled so. The

transition relation is defined such that the effect of actions is
reflected in the position of the hunters and in the communica-
tion channel. To model the fact that the state of the Wumpus
is unknown, we consider two transitions from e0 with actions
~α = 〈Mv,Mv〉, namely 〈e0, ~α,e1〉 and 〈e0, ~α,e2〉.

5 Reasoning as and about others
We now characterize two types of reasoning: (1) Stereotypi-
cal: when an agent represents and reasons about other agents
and their beliefs; (2) Empathetic: the agent casts itself into
the mind of another, reasoning as the other would. The for-
mer is similar to that of standard Epistemic Logic [Fagin et
al., 1995], in which every agent is homogenous, while the lat-
ter uses different perspectives and inference mechanisms for
others. Recalling the notion of ascribed mental state (Defini-
tion 2) we can now state these concepts formally:

1. An agent i with mental state 〈Mi, c〉 performs a stereo-
typical reasoning about agent j ∈ ch(i) when it per-
forms a transition 〈c, c′〉 ∈ τi with c 6∼j c

′. The transi-
tion captures the application of a stereotype about j.

2. An agent i performs an empathetic reasoning as agent j
whenever it performs a transition 〈prj(c), c′〉 ∈ τj , i.e.,
progresses the ascribed mental state 〈Mj , prj(c)〉.

These are depicted in Figure 3 (left), where mental states
in black may have changed, while gray ones are updated with
respect to one child. In the first (above) agent 1 performs a
transition c′1 ∈ τ(c1) and, as a consequence, the (implicit)
mental state ascribed to 12 may change. In the second, agent
1 computes c12 = pr12(c1) then c′12 ∈ τ(c12) then c′1, as we
will see. Computing such c′1 in case of empathetic reasoning
is a nontrivial step: c′1 needs to hold the updated informa-
tion about 12 as well as preserving the rest of the prexisting
information from c1 that is about 1 or other children.

1 1

12 12

1 1

12 12

c0 cm

Figure 3: (left) Representation of stereotypical and empa-
thetic steps. (right) Depiction of an expansion from c0 to cm.



With these two simple concepts at hand, we describe how
an agent reasons by applying either or both these strategies.
Of importance here is that we are describing the “state-space”
in which an agent reasons, but not its algorithmic process. In
other words, an agent that reasons with a context Γ needs
its own heuristics for deciding when and how apply either
form of reasoning, but we are agnostic with respect to this
implementation. Instead, we define here the outcome of the
reasoning through the notion of expansion.

A mental path for i is a sequence of agent labels j0 · · · jm
such that j0 = jm = i and, for every 0 < ` < m, either
j`+1 = j`, j`+1 ∈ ch(j`) or j`+1 = pa(j`). That is, a men-
tal path is a path in the tree of A that starts and ends at the
root. A path σ represents the mental steps of the reasoning
agent when it direct its attention towards virtual agents, pro-
jecting the corresponding mental states, to identify a possible
representation for the result of this simulated reasoning.

Finally, an expansion of 〈Mi, ci〉 is a sequence of mental
states σ = 〈Mj0 , c

0〉, 〈Mj1 , c
1〉, · · · , 〈Mjm , c

m〉 such that
c0 = ci, j0 · · · jm is a mental path for i and, ∀` < m, either:

(a1) j`+1 = j` and c`+1 ∈ τj`(c`), i.e. a local transition;
(a2) j`+1 ∈ ch(j`) and c`+1 = prj`(c

`);
(a3) j`+1 = pa(j`) and c`+1 ∼j` c for any c s.t. prj(c) =

prj(lastj(σ, `)) and j ∈ ch(j`+1). lastj(σ, `) is the last
configuration of agent j` in the prefix of σ of length `.

Point (a2) represents a top-down projection from j` to j`+1,
and (a3) represents an inverse projection, that computes a
configuration c`+1 holding the preexisting information about
the parent and other children, plus the updated information
about child j`. Points (a1)-(a3) can be always computed, as
we assumed Γ to be complete. For example, a possible expan-
sion from 〈MBK , c22〉 is σ = c22, c23, c16, c17, whose path
is 1, 12, 12, 1. Figure 3 (right) depicts an expansion (dashed
edges are local transitions – point (a1) above).

Expansions allow to retrieve a new configuration (like cm
in Figure 3) through the thinking that happens along the
path, but they do not consider observations. We now de-
fine a function that computes configurations resulting from
mental expansions, by first considering received observa-
tions. Given Γ and a model Mi, we compute the relation
nexti ⊆ Ci ×O|A| × Ci such that 〈c0, ~o, cm〉 ∈ nexti iff:

• c′i ∈ ωi(c, ~oi) and, ∀j ∈ A, j 6= i, c′j ∈ ωj(prj(c
′
i), ~oj);

• cm is the last configuration of an expansion from
〈Mi, c

′〉, with prj(c′) = c′′j and c′′j ∼0 c
′
j , ∀j ∈ A.

The first item progresses each model separately; the second
selects a new c′ for i capturing all the mental states by only
looking at their local information, then returns an expansion.

6 Social autism and ToM
In this section we illustrate different degrees of social be-
haviours, and how they affect computational aspects of the
collective execution. We imagine that the agent can simu-
late executions “in its mind” to foresee plausible evolutions.
Given Γ and E , the set of global states for agent i is

Gi = E × Ci

such that each global state g = 〈e, c〉 holds the (current) en-
vironment state and a configuration for agent i.

If we define an action vector as a tuple of size |Ag| com-
prising an action for each concrete agent, then a sequence
ρ = g0~α0g1~α1 · · · , alternating global states and action vec-
tors, is termed a run for agent i on E .

In what follows, to ease the notation, we assume that i is
the reasoning agent, and we use j to quantify on A.

Zero-order ToM: autistic agents
In the most basic setting, an agent is not socially intelligent:
it does not consider models of other agents (although it may
attribute them beliefs), thus it is not able to reason as them.
The typical approach for group strategies is to synthesize a
plan where the group collectively achieves some object. For
this plan to be successful, each agent does not need to rep-
resent others: the synthesis of the plan is done externally,
from a third-person view. Even if these agents may agree on
a protocol, they are incapable of devising a new strategy au-
tonomously when failure happens. A = {i} and Γ = 〈Mi〉.

Given a mental state 〈Mi, c
0〉 for i, we say that ρ =

g0~α0g1~α1 · · · is a feasible run for agent i over E iff g0 =
〈e0, c0〉, and g`+1 = 〈e`+1, c`+1〉 is such that for each ` ≥ 0:
• ~α`

i is plausible in 〈Mi, c
`〉;

• e`+1 ∈ γ(e`, ~α`);
• c`+1 ∈ nexti(c`, 〈o〉), with o = perc(e`+1, i).

The agent only considers its own actions and received obser-
vations, ignoring the actions and observations of others.
Example 1. (Wumpus Quest). If we consider all feasible
runs as possible, then a strategy for agent i guaranteed to
kill the Wumpus does not exist. The knight does not take
into consideration the fact that the other may get scared at
the thought of facing an awake Wumpus: there are two dis-
tinct courses of thought 〈c15, c16〉, 〈c15, c10〉 in MP . In-
steadMBK does not contemplate this, as the only path from
c31 leads to the decision to attack: the knight modelled as a
zero-order ToM agent is not able to foresee this.

First-order ToM: socially aware agents
The second category of social behaviours arises when the
agent has its own representation of others, and can reason as
them. A socially aware agent is aware of the fact that others
have different mental states, but it only assigns a model to all
concrete agents: A is the set {i} ∪ (i ·Ag).

We say that ρ = g0~α0g1~α1 · · · is a plausible run of Γ over
E for agent i iff g0 = 〈e0, c0〉, and g`+1 = 〈e`+1, c`+1〉 is s.t.:
• ~α`

i is plausible in 〈Mi, c
`〉;

• ~α`
l(j) is plausible in 〈Mj , prj(c

`)〉, for any j ∈ ch(i);

• e`+1 ∈ γ(e`, ~α`);
• c`+1 ∈ nexti(c`, ~o), with each ~oj = perc(e`+1, l(j));

Note how l(j) is used to assign observations to virtual agents.
Example 2. (Wumpus Quest). A strategy now exists, and the
runs it generates are plausible. Being able to assignMP to
12, agent 1 has a strategy: if he sees the Wumpus sleeping he
will kill it without help. Otherwise, he will signal that it is
instead asleep, deceiving the other into cooperation. Indeed,
MP assumes that the peasant would not be reluctant to help
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Figure 4: Two runs of the Wumpus Quest example.

in this case: the only course of thought (〈c14, c10〉 in MP )
leads to common belief about the state of the Wumpus.

Second-order ToM agents
Although socially aware agents may show social behaviours
and attribute mental states to others, they lack an evolved the-
ory of mind, i.e. to acknowledge that others are reasoning
in the same way, and therefore have expectations and models
of them: socially aware agents do not model virtual agents.
For second-order ToM agents instead,A (and therefore Γ) in-
cludes two levels of the heirarchy: agent i, all agents j ∈ i·Ag
and (some) j′ ∈ ch(j), with j ∈ ch(i).

However, to keep track of what others regard as plausible,
we need to understand what does it mean to behave in an
acceptable way. Our view is that the runs generated by the
collective actions appear plausible to each concrete agent.

This requires to (a) extend the size of action vectors to
the size of A, and (b) a new definition of global states, in
which we keep track of the environment state that each con-
crete agent regards as both possible and acceptable:

G+
i = E1 × · · · × E|Ag| × Ci

A run ρ is an acceptable run for i of Γ over E , iff g0 =
〈e01, . . . , e0n, c0〉, and g`+1 = 〈e`+1

1 , . . . , e`+1
n , c`+1〉 is s.t.:

• each ~α`
j is a plausible action in c`, for any j ∈ A;

• e`+1
i ∈ γ(e`i , act(~α

`, i));
• e`+1

j ∈ γ(e`j , 〈α1, . . . , α|Ag|〉) where

αi = ~α`
j·i and αl(j) = ~α`

j for each j ∈ ch(i).

• perc(e`+1
i , l(j)) = perc(e`+1

j , l(j)) for each j ∈ ch(i);

• c`+1 ∈ nexti(c`, ~o), such that ~oi = perc(e`+1
i , i), and

~oj = perc(e`+1
j′ , l(j)), with j′ = pa(j), for any j 6= i;

First, each action component is plausible to the ascribed
mental state (first item). In the second item, act(~α, i)
is the vector of actions computed from ~α` by only tak-
ing the plausible actions for i and each child j ∈ ch(i)
in A, ordered by l(j). E.g. if i = 1 and A =
〈1, 12, 121〉 then act(〈a1, a12, a121〉, 1) = 〈a1, a12〉 and
act(〈a1, a12, a121〉, 12) = 〈a121, a12〉. This is the environ-
ment state that agent i considers as plausible (and, as E is non-
deterministic, more than one can exist). Similarly, in the third
item, a new environment component is computed for each
agent j ∈ ch(i), but the only actions forced to be plausible
are those of j and i (indeed, we are not interested in assum-
ing acceptable behaviours for agents other than i; in that case,
the condition can be replaced with e`+1

j ∈ γ(e`j , act(~α
`, j))).

In the fourth item, we compare the observations received if
we take the environment state e`+1

i that the reasoning agent i

considers as the next one, with the state e`+1
j that each other

agent j is expecting to receive, i.e. would be observed if their
prevision (about the action selected by agent i) was correct.
That is, each e`+1

j justifies perc(e`+1
i , l(j)) to agent j. Note

that, in the last item, virtual agents observe the environment
component of their parents. One such explanation is selected
for each g`+1 and, at each future step, a new one needs to
be found. When one such run exists, then the observations
received by all concrete agents, at each step, are justifiable,
otherwise the behaviour of i violates Γ (in this case, it is “un-
masked”). Therefore, acceptability depends on the observa-
tions that others receive. In the case of observable actions,
this requires equality, but this is not true for private actions.
Example 3. (Wumpus Quest) The informal strategy in Ex-
ample 2 does not always generate acceptable runs. Indeed,
M121 = MBK tells (c3) that the White Knight would not
ask for help if not needed. Hence, as the whistle is blown to
signal that the Wumpus is sleeping when in reality it is awake
(e1 = e5), the peasant can detect a misalignment with his
expectations (a next environment state e12 = e7 in which the
scream was heard), hence will fail to find a justification for
the signal: perc(e5, 1) 6= perc(e7, 2); thus unmasking the
Knight. This run is depicted in Figure 4 (run above; the other
is one that leads the peasant to get scared, and the rest are
omitted). If the knight shows enough empathetic attitude, he
could realise, before acting, that his action may appear unjus-
tifiable to 12. As we said, we are agnostic on his decision, but
we are now capable of formalizing this notion.

Finally, note that acceptable runs capture the view stated
earlier. Given one acceptable run ρ for i, the run over G ob-
served by j ∈ ch(i) is the sequence ρj = g0j act(~α

0, j) · · · ,
with g`j = 〈e`l(j), prj(c

`)〉 for each ` ≥ 0.

Theorem 1. Given an acceptable run τ for i, any run of Γ
over E observed by each agent j ∈ ch(i) is plausible for j.

7 Conclusions and Future Work
Using agent models, we devised a computational mechanism
to discriminate which behaviours of others are plausible, and
decide which behaviour for ourselves is acceptable. In fu-
ture work, we will define different notions of acceptability,
and investigate how to build ATL (Alternating-time Temporal
Logic [Alur et al., 2002]) games to verify strategic abilities in
this setting, and synthesise strategies that conform to Γ, i.e.
induce acceptable runs, also in scenarios of deception.
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