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Abstract. Backbone variables have the same assignment in all solutions to a
given constraint satisfaction problem; more generally, bias represents the pro-
portion of solutions that assign a variable a particular value. Intuitively such
constructs would seem important to efficient search, but their study to date has
been from a mostly conceptual perspective, in terms of indicating problem hard-
ness or motivating and interpreting heuristics. Here we summarize a two-phase
project where we first measure the ability of both existing and novel probabilis-
tic message-passing techniques to directly estimate bias and identify backbones
for the Boolean Satisfiability (SAT) Problem. We confirm that methods like Be-
lief Propagation and Survey Propagation–plus Expectation Maximization-based
variants–do produce good estimates with distinctive properties. The second phase
demonstrates the use of bias estimation within a modern SAT solver, exhibit-
ing a correlation between accurate, stable, estimates and successful backtracking
search. The same process also yields a family of search heuristics that can dra-
matically improve search efficiency for the hard random problems considered.

1 Introduction

Probabilistic message-passing algorithms like Survey Propagation (SP) and Belief Prop-
agation (BP), plus variants based on Expectation Maximization (EM), have proved very
successful for random SAT and CSP problems [2–4]. This success would appear to re-
sult from the ability to implicitly sample from the space of solutions and thus estimate
variable bias: the percentages of solutions that have a given variable set true or false.
However, such bias estimation ability has never been measured directly, and its actual
usefulness to heuristic search has also escaped systematic study. Similarly, backbones,
or variables that must be set a certain way in any solution to a given problem, have
also drawn a good deal of recent interest [5–9], but they have not been directly targeted
for discovery within arbitrary problems. Since backbones must have 100% positive or
negative bias, bias determination generalizes the task of backbone identification.

Isolating the performance of probabilistic techniques when applied to bias estima-
tion improves our understanding of both the estimators and of bias itself, ultimately
directing the design of a complete problem-solving system. Thus the first stage of our
study compares the basic accuracy of six message-passing techniques and two control
methods when applied to hard, random, satisfiable SAT problems as stand-alone bias es-
timators. The second stage assesses how such comparisons translate when we move the
? This article summarizes a more detailed description that is available as a technical report [1].
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algorithms into the realm of full-featured search, by embedding them as variable/value
ordering heuristics within the MiniSat solver [10]. While it is intuitive that bias should
relate to how we set variables during search, it is not obvious that bias should be a key
to efficiency in the presence of modern features like restarts and clause learning.

2 Definitions

Definition 1 (SAT instance) A (CNF) SAT instance is a set C of m clauses, constrain-
ing a set V of n Boolean variables. Each clause c ∈ C is a disjunction of literals built
from the variables in V . An assignment X ∈ {0, 1}n to the variables satisfies the in-
stance if it makes at least one literal true in each clause.

Definition 2 (Bias, Survey) For a satisfiable SAT instance F , the estimated bias dis-
tribution θv of a variable v attempts to represent the fraction of solutions to F wherein
v appears positively or negatively. Thus it consists of a positive bias θ+

v and a negative
bias θ−v , where θ+

v , θ−v ∈ [0, 1] and θ+
v + θ−v = 1. A vector of bias distributions, one

for each variable in a theory, will be called a survey, denoted Θ(F).

Equivalently, it can be useful to think of a variable’s bias as the probability of finding
the variable set positively or negatively when randomly sampling from the space of
satisfying assignments. Less formally, the “strength” of a bias distribution indicates
the margin by which it favors one value over the other.

3 Probabilistic Methods for Estimating Bias

We compare six distinct message-passing techniques for measuring variable bias: Belief
Propagation (BP), EM Belief Propagation-Local/Global (EMBP-L and EMBP-G), Sur-
vey Propagation (SP), and EM Survey Propagation-Local/Global (EMSP-L and EMSP-
G). On receiving a SAT instance F , each of the propagation methods begins by for-
mulating an initial survey at random. Each algorithm proceeds to successively refine
its estimates over multiple iterations. An iteration consists of a single pass through all
variables, where the bias for each variable is updated with respect to the other vari-
ables’ biases, according to the characteristic rule for a method. If no variable’s bias has
changed between two successive iterations, the process ends with convergence; other-
wise a method terminates by timeout or some other parameter. EM-type methods are
“convergent”, or guaranteed to converge naturally, while regular BP and SP are not [4].

BP estimates bias via Pearl’s Belief Propagation, also known as the Sum-Product
algorithm [11, 12]. SP (Survey Propagation) extends BP to measure not only the prob-
abilities of a variable being positively or negatively constrained in a solution, but also
the probability that it could have been set either way [2]. Such extra sensitivity changes
the dynamics between iterations, but in the final survey any mass for the third “joker
state” is evenly divided between the positive and the negative for the purposes of esti-
mating bias. Both methods can be re-formulated within the Expectation Maximization
framework [13], producing the four EM-based methods. EMBP-L and EMBP-G use
the two-state model of BP and differ in exploiting variational approximations [14] based
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on local (generalized arc-) consistency and global consistency, respectively. Similarly,
EMSP-L and EMSP-G apply local or global consistency to the three-state model repre-
sented by SP. Global methods embody a tighter bound on the variational approximation,
but in general take longer to compute than local methods. For experimental compari-
son, we created two non-probabilistic control methods. LC (“Literal Count”) greatly
simplifies the backbone-inspired heuristic at the core of a highly successful system for
refuting unsatisfiable SAT instances [8]. CC (“Clause Count”) is an even simpler base-
line method that just counts the number of clauses containing a given variable as a
positive literal, and the number wherein it appears negatively. The relative weights of
these two counts determine the variable’s estimated bias distribution.

4 Summary of Experiments

The first phase of experiments compared the eight methods as stand-alone bias esti-
mators for randomly generated problems whose true biases were found via exhaustive
model counting. Figure 1 depicts basic root-mean-squared error, with the global EM-
based methods performing the best, along with the controls and then regular BP. Local
EM-based methods and regular SP comprise a second band of less accurate methods,
providing bias estimates that were off by .36 up to .48, depending on the number of
backbone variables in a problem.
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Fig. 1. RMS error over 500 instances of increasing backbone size, n = 100.

However, a second pattern arises across experiments emphasizing strong biases and
estimates: “backbone identification rate” and “rank of first wrong bias” (see longer
presentation [1]). The former measures the proportion of actual backbone variables that
an estimator biases toward the correct polarity. The latter examines the variables to
which a method assigns the strongest biases, and finds the highest-ranking estimate that
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was toward the wrong polarity. For both of these measures, BP actually performs the
best, followed by EMSP-G, LC, SP, EMBP-G, the local EM methods, and CC.

These two sets of measures (basic accuracy and accuracy on strong biases) turned
out to be the most important predictors of success in the second phase of study. Here,
the methods were embedded as variable-ordering heuristics within the MiniSat solver
[10]. Part of this process meant determining a good way to use surveys: based on our
experimental experiences, the results reflect the intuitive “succeed-first” approach of
setting the most strongly-biased variable in a survey in the direction of its stronger bias.

The overall runtime results in Figure 2 exhibit a correlation between good bias es-
timates and significant improvement in search efficiency. The graph consists average
runtimes broken down to show the proportion that was devoted to computing surveys.
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Fig. 2. Total/Survey runtimes averaged over 100 random problems, n = 250 and α = 4.11.

The “DEFAULT” method represents regular MiniSat without bias estimation, and
BP performed so badly as to not appear on the graph. When scaling to larger experi-
ments, the relative efficiency of the best method (EMSP-G) exhibits exponential growth.
For instance, when n = 450, it requires an average of 5 minutes per problem, while de-
fault MiniSat typically requires 30, or times out after three hours.

Of the many measures examined during the first phase of experiments, basic ac-
curacy seems to be the most important predictor of success as a heuristic: global EM
methods and controls outperform local EM methods and SP/BP, and within each of
these bands the SP version is a more effective heuristic than the BP version. Excep-
tions to this correlation indicate the importance of two additional factors: the secondary
strength-oriented accuracy measures mentioned above, and variance in accuracy. For
instance, CC compares relatively well in basic accuracy, but ranks lower as a heuristic;
it scored the worst with the accuracy measures that focus on strong biases. And while
BP scores the best on such secondary measures and does relatively well on basic accu-
racy, it yields the worst heuristic. This may be due to variance in basic accuracy–of the
various methods BP exhibited the wildest fluctuations in error by far.
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5 Conclusions

The main findings of these experiments indicate that probabilistic message-passing
techniques can be comparatively successful at estimating variable bias and identifying
backbone variables, and that successful bias estimation has a positive effect on heuris-
tic search efficiency within a modern solver. Secondary contributions include a novel
family of EM-based bias estimators, and a series of design insights culminating in a fast
solver for hard random problems.

However, many important issues remain. For instance, structured and unsatisfiable
instances have not yet been considered by this bias estimation framework. This may
require a finer-grained analysis of accuracy that considers variance across multiple runs
with various random seeds. Further, the best way to use surveys for variable ordering
cannot be settled conclusively by the limited span of branching strategies that have
been studied to date. For instance, we waste some of the SP framework’s power when
we split the probability mass for the joker state between positive and negative bias;
future branching strategies might favor variables with low joker probabilities.
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