
Abstract

This demonstration will build on previously
shown end-to-end PDDL2.2 developer environ-
ment built on top of Microsoft’s VS Code, but will
expand substantially in two directions. First, the
session from editor.planning.domains can seam-
lessly migrate from the web browser to VS Code
editor and take advantage of more elaborate
PDDL support. Second, VS Code now integrates
debugging tools for PDDL modelers such as
search tree visualization, step-by-step search de-
bugger and plan validation. This offers coherent
set of tools to use from classroom to an industrial
planning application debugging.

1 Introduction

Since ICAPS 2018, the community started centralizing ed-
ucational material on the education.planning.domains site,
notably the Planning Domain Definition Language (PDDL
Reference). However, for the success, it is important to
consolidate and integrate such content and tools. For exam-
ple the editor.planning.domains web-browser based expe-
rience has zero installation footprint and is therefore ideal
as a classroom tool, but cannot support more advanced sce-
narios of interaction between the planning engine and the
modeling environment. Such environment supporting rich
interactions and deep integration into the planning engine
is the (PDDL Extension for VS Code). This integrated de-
veloper environment for (PDDL2.2) (Edelkamp et al.,
2004) helps industrializing planning models (e.g. by de-
clarative template-based problem file generation or visual-
izing the temporal and numeric aspects of plans), but also
helps the modeler understand how is the planner looking
for the solution and whether the PDDL model needs adjust-
ments for better performance.

Why building such environment on top of VS Code? It
was already demonstrated by (Brom et al., 2012) or
(Strobel Kirsch, 2015) that implementing a PDDL inte-
grated developer environment from the ground up is feasi-
ble but hard to maintain over time. Furthermore, PDDL
code remains isolated from the other components of the
overall software solution.

With the drive to increased adoption of AI Planning and

PDDL as the modeling language, this system demo pro-
poses value-adding solution that seamlessly connects the

classroom tools and more advanced industrial development
tools into one experience, accelerates solution prototyping
and makes planning problems diagnosable.

2 Guiding the PDDL novice

Starting in editor.planning.domains website, a novice
learns by starting form a domain/problem example, invok-
ing the cloud planner at solver.planning.domains and visu-
alizing the plan. Number of plug-ins are available to
streamline the experience by, for example, generating mun-
dane parts of problem files.

2.1 From Web Browser to the Desktop

When they start building their own PDDL model and would
benefit from a more elaborate PDDL support, they may
save their progress into a session and with one click get the
session open in VS Code, providing the environment is in-
stalled. The editor and the PDDL extension are available
free of charge and runs on Windows, Linux and Mac.

2.2 Understanding PDDL Syntax

Once in the off-line editor, standard IDE features are avail-
able such as code snippets, auto-completion, hover-over
tooltips, jump to declaration and find all references of a
predicate, function or type across domain/problem/plan
files. Syntax and validation errors and warnings are shown.

2.3 Introspecting into PDDL Plans

For ease of understanding of plans, plans are visualized us-
ing Gantt chart, resource usage swim lanes and line plots.
(VAL) utilities are used to validate plans, flag errors and
evaluate values of numeric functions.

2 Empowering the Expert

Beyond early prototyping, PDDL must be subject to the
same continuous integration principles as any other code in
the solution. The developer environment must therefore
support at least version control and unit/regression testing.

2.1 Regression testing planning domains

 To comprehensively test a planning domain, a growing
number of problem files (and expected plans) must be
maintained. As the solution grows and matures, this even-
tually becomes the bottleneck. It was demonstrated by
(Building Support for PDDL as a Modelling Tool) that

From a Classroom to an Industry

From PDDL “Hello World” to Debugging a Planning Problem

Jan Dolejsi and Derek Long and Maria Fox
{JDolejsi, DLong6, MFox2}@slb.com

Schlumberger, UK
Christian Muise

christian.muise@ibm.com
IBM Research AI, Cambridge, USA

adopting the declarative template-based modeling ap-
proach to the problem file assures integrity of every prob-
lem file (e.g. initialization of functions to zero) ever sent to
the planner and ability to bulk-generate problem files from
data. While the data for unit/regression test problem files
may come from JSON files stored in version control, at run-
time the data comes from sensors or databases. The ad-
vantage of this approach is that the exact same problem file
template may be used in both scenarios.
 Templating languages such as [Jinja2] or [Nunjucks]
may be easily adopted by those familiar with JavaScript or
Python respectively.

2.2 Understanding Planner Performance

While the goal of AI Planning is to furnish all industries
with domain agnostic engine implementation that performs
consistently on a wide range of PDDL domain encodings,
the reality thus far is that some modeling approaches yield
better performance than others given the engine implemen-
tation. Our experience has shown that PDDL modelers tend
to omit obvious (to human) pre-conditions, build models
with more-than-enough fidelity and do not appreciate how
the size of the search space changes with modeling choices
(including symmetry).

2.2.1 Search Graph Shape Indicator

 Every note-worthy planning problem is searching for a
solution in a space with too many dimensions to visualize
for the human eye. However, there are certain characteris-
tics of the search performance that could be visualized.
 First indicator of the domain encoding efficiency is the
general shape of the search tree. Search tree dominated by
one long search branch is very efficient. Broad tree with
too many short branches indicates missing pre-conditions.
A combination (one long branch with one or more broad
plateaus) indicates certain actions may need to be re-mod-
eled to avoid the plateaus.

2.2.2 Seen States Summary Plots

While the planner is searching, it is discovering more
states. Those seen states do not characterize the whole
space, but indicate, whether and how fast is the planner
closing the gap between the best state so far and the goal.
States may be plotted in two ways: heuristic value vs state
count and as a histogram of heuristic values.

2.2.3 Incremental State Visualization

Another visual that may be presented while the planner is
searching is the best-state-so-far. The state could be de-
picted in 3 parts: the planhead (visualized as a Gantt chart),
order of helpful actions and relaxed plan (as an approxi-
mate Gantt chart). As the search progresses, the planhead
portion grows, while the relaxed plan shortens. When the
planner reaches a plateau, the user can easily see what state
is at the root of the plateau, which is an indicator for model
improvement.

3. Conclusion

This system demo will present a range of PDDL learning
and support tools from a web browser session to a powerful
search debugger. Such toolset will improve the impact of
classroom training as the participants will take home a

working setup on their computer, which will empower
them to build full blown planning solutions.

Figure 1 Rich plan visualization

{

 "defaultDomain": "trucks.pddl",

 "cases": [

 {

 "label": "Problem #1",

 "problem": "trucksp0.pddl",

 "expectedPlans": [

 "trucksp0-1.plan"

]

 },

 …

]
}

Figure 2 Unit/regression testing

Figure 3 Templated problem file generation

Figure 4 Visualizing search trees interactively

Figure 5 PDDL model efficiency characteristics

and search debugging

References

[PDDL Reference] Adam Green:
https://nergmada.github.io/pddl-reference/

[Building Support for PDDL as a Modelling Tool], ICAPS
2018, KEPS workshop, Derek Long, Jan Dolejsi and
Maria Fox

 [Edelkamp et al., 2004] Edelkamp, S., and Hoffmann, J.
2004. PDDL2.2: the language for the classical part of

the 4th international planning competition. Technical
Report 195, ALU Freiburg.

[Brom et al., 2012] Mgr. Cyril Brom Ph.D, PDDL Studio,
https://amis.mff.cuni.cz/PDDLStudio/.

[Strobel Kirsch, 2015] Volker Strobel, Alexandra Kirsch,
MYPDDL, https://www.researchgate.net/publica-
tion/284788212_Planning_in_the_Wild_Model-
ing_Tools_for_PDDL

[planning.domains, 2015] Andrew Coles, Christian Muise,
Kristie Taylor-Muise, http://planning.domains/.

[VS Code] or [Visual Studio Code] Microsoft,
https://code.visualstudio.com/.

[PDDL extension for VS Code],
https://marketplace.visualstudio.com/items/jan-
dolejsi.pddl/

[Jinja2] http://jinja.pocoo.org/docs/2.10/templates/

[Nunjucks] https://mozilla.github.io/nunjucks/

[parser] Parser configuration guidelines for PDDL VS
Code extension:
https://github.com/jan-dolejsi/vscode-pddl/wiki/Con-
figuring-the-PDDL-parser

[planner] Planner configuration guidelines for PDDL VS
Code extension:
https://github.com/jan-dolejsi/vscode-pddl/wiki/Con-
figuring-the-PDDL-planner

Domain

Tem-

plated

Problem
Pre-

processor
Problem Planner

Data.json

Jinja2, Nunjucks,

Python, shell script,

…

https://nergmada.github.io/pddl-reference/
https://amis.mff.cuni.cz/PDDLStudio/
https://www.researchgate.net/publication/284788212_Planning_in_the_Wild_Modeling_Tools_for_PDDL
https://www.researchgate.net/publication/284788212_Planning_in_the_Wild_Modeling_Tools_for_PDDL
https://www.researchgate.net/publication/284788212_Planning_in_the_Wild_Modeling_Tools_for_PDDL
http://planning.domains/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items/jan-dolejsi.pddl/
https://marketplace.visualstudio.com/items/jan-dolejsi.pddl/
http://jinja.pocoo.org/docs/2.10/templates/
https://mozilla.github.io/nunjucks/
https://github.com/jan-dolejsi/vscode-pddl/wiki/Configuring-the-PDDL-parser
https://github.com/jan-dolejsi/vscode-pddl/wiki/Configuring-the-PDDL-parser
https://github.com/jan-dolejsi/vscode-pddl/wiki/Configuring-the-PDDL-planner
https://github.com/jan-dolejsi/vscode-pddl/wiki/Configuring-the-PDDL-planner

