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Abstract

Proper epistemic knowledge bases (PEKBs) are syntactic
knowledge bases that use multi-agent epistemic logic to rep-
resent nested multi-agent knowledge and belief. PEKBs have
certain syntactic restrictions that lead to desirable computa-
tional properties; primarily, a PEKB is a conjunction of modal
literals, and therefore contains no disjunction. Sound entail-
ment can be checked in polynomial time, and is complete for
a large set of arbitrary formulae in logics Kn and KDn. In
this paper, we extend PEKBs to deal with a restricted form of
disjunction: ‘knowing whether’. An agent i knows whether ϕ
iff agent i knows ϕ or knows ¬ϕ; that is, �iϕ ∨ �i¬ϕ. In
our experience, the ability to represent that an agent knows
whether something holds is useful in many multi-agent do-
mains. We represent knowing whether with a modal opera-
tor, ∆i, and present sound polynomial-time entailment algo-
rithms on PEKBs with ∆i in Kn and KDn, but which are
complete for a smaller class of queries than standard PEKBs.

Introduction
Reasoning about the nested beliefs or knowledge of other
agents is essential for many collaborative and competitive
tasks. While highly expressive doxastic and epistemic logics
exist for this (Fagin et al. 1995), such logics are computa-
tionally expensive. To implement agents that can efficiently
reason about other agents in complex scenarios, approxima-
tions of these logics seem necessary in many cases.

Proper epistemic knowledge bases (PEKBs), proposed by
Lakemeyer and Lespérance (2012), are one such approxima-
tion. PEKBs are syntactic knowledge bases that contain sets
of restricted modal literals (RMLs), which are modal liter-
als that contain no conjunction or disjunction. Lakemeyer
and Lespérance (2012) show that, for the epistemic logic
Kn, a PEKB can be compiled in exponential time into a
special normal form, called prime implicate normal form
(PINF), which is logically equivalent to the original PEKB,
and database-like entailment queries can be made on these
compiled form formulae in polynomial time. Muise et al.
(2015b) extended this work to show that, if the knowledge
base is known to be consistent, for example due to the use
of a sound belief update operator, then entailment queries
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can be done in polynomial time without the expensive pre-
compilation step. In both cases, entailment queries are com-
plete for a reasonably large set of arbitrary modal logic for-
mula, and sound for any query. Muise et al. (2015a) used this
to compile a multi-agent epistemic planning problem into a
classical planning problem, allowing plan and policy gener-
ation over multi-agent epistemic states.

The lack of disjunction is a restriction that is acceptable
for some scenarios, but clearly not all; however extend-
ing PEKBs to include disjunction would eliminate the de-
sirable computational properties. We believe the next best
opportunity is to include a restricted form of disjunction:
‘knowing whether’. An agent knows whether ϕ is true —
or in the case of belief logics, is opinionated as to whether
ϕ is true — if they know ϕ or they know ¬ϕ. Formally,
�iϕ ∨ �i¬ϕ. The ability to model ‘knowing whether’ is
useful in many domains, such as for action preconditions in
planning (Scherl and Levesque 1993), diagnostic planning
applications (Baier, Mombourquette, and McIlraith 2014),
and in scenarios such as gossip (van Ditmarsch and Kooi
2015), muddy children (Fagin et al. 1995), and question-
ing (Aloni, Egré, and De Jager 2013). In particular, ‘know-
ing whether’ is useful are multi-agent domains in which
agents know (or observe) that events occur without observ-
ing the outcome of the event itself. Cosider the following
scenario involving multi-vehicle search and rescue. If one
unmanned vehicle (vehicle 1) has surveyed a sequence of
points looking for survivors, we know that the vehicle knows
whether there are survivors at surveyed points. If another
vehicle (vehicle 2) observes a survivor at point A, it can
then infer that the first vehicle knows that there is a sur-
vivor ((�1survivor ∨ �1¬survivor) ∧ �2survivor ⊃
�1survivor) and may assume that vehicle 1 has returned
to base to report without finishing its survey, as pre-scripted.
Vehicle 2 can now replan that: (a) it should survey the re-
maining points; and (b) it need not enact a rescue plan. With-
out being able to represent that vehicle 1 knows whether
there is a survivor at point A, vehicle 2 cannot infer this
without regressing “into the past”, because it does not have
�1survivor∨�1¬survivor in its knowledge base, so can-
not infer that �1survivor. In our experience modelling real
applications, the lack of disjunction in knowledge bases has
only been problematic for these ‘knowing whether’ cases.

In this paper, we extend PEKBs to include knowing



whether. Rather than model this as an explicit, yet restricted
disjunction, we follow Fan et al. (2015) by modelling know-
ing whether as its own modal operator, ∆i, defined as ∆iφ ≡
�iφ ∨�i¬φ. After providing the necessary background for
the paper in the following section, we show how to compile
an extended PEKB into a prime implicate normal form in
exponential time and space, and how to perform entailment
queries for logic Kn in polynomial time, preserving the nice
computational properties from Lakemeyer and Lespérance
(2012). The cost is a less expressive set of complete queries.
We then show that, as with Muise et al. (2015b), a consistent
knowledge base in logic KDn can be queried (for a smaller
class of queries) in polynomial time without any prior com-
pilation. We conclude with a discussion and future work.

The end result is a model for efficiently reasoning about
nested beliefs in multi-agent environments that would be
suitable for many scenarios.

Background
Epistemic Modal Logics
Let P and Ag respectively be finite sets of propositions and
agents. The set of well-formed formulae L for epistemic
logic is obtained from the following grammar:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | �iϕ

in which p ∈ P and i ∈ Ag. Informally, �iϕ means that
agent i knows (or believes1) ϕ. The shorthand ♦iϕ is the
dual of �iϕ, defined as♦iϕ ≡ ¬�i¬ϕ. Operators for ∨,⊃,
and ≡ can be derived in the usual way.

The semantics of this logic are given using Kripke
structures. A Kripke structure is a tuple M =
(W, π,R1, . . . , Rn), in which W is the set of all possible
worlds, π ∈ W → 2P is a function that maps each world w
to the set of all propositions that hold inw, andRi ⊆ W×W
(for each i ∈ Ag) is an accessibility relation which captures
each agent’s uncertainty about the world —see (Fagin et al.
1995) for details. The formula �iϕ holds in w iff ϕ is true
in all worlds that the agent i considers possible at w, while
♦iϕ means that the agent considers ϕ possible, thus holding
in at least one possible world. The satisfaction of a formula
ϕ in a structure M and a world w, denoted as M,w � ϕ, is
defined inductively over the structure of ϕ:

M,w � p iff p ∈ π(w)
M,w � ϕ ∧ ψ iff M,w � ϕ and M,w � ψ
M,w � ¬ϕ iff M,w 2 ϕ
M,w � �iϕ iff for all v ∈ Ri(w), M,v � ϕ

We say that ϕ entails ψ, written ϕ |= ψ iff for every model
M and world w such that M,w � ϕ, we have M,w � ψ.

Kripke structures with specific constraints lead to specific
properties (or axioms) of knowledge or belief (Fagin et al.
1995). For example, axiom K holds for any Kripke frame,
while the axiom D holds on serial Kripke frames, resulting
in the axioms:
K �i(ϕ ⊃ ψ) ⊃ (�iϕ ⊃ �iψ) (Distribution)
D �iϕ ⊃ ¬�i¬ϕ (Consistency)

1For the remainder of the paper, we will use the term knowledge
to mean both knowledge and belief.

Combinations of axioms result in different logics. Here,
we consider logics Kn (axiom K only) and KDn (K and
D), in which n specifies that there are multiple agents in the
model.
Example 1. Consider an example, taken from Muise et
al. (2015b) about two agents, Bob and Alice, who are co-
workers. Bob knows Alice has applied for a promotion. Bob
sees an envelope containing the outcome of the promotion,
but has no information about whether Alice has opened the
envelope. However, Bob knows that if Alice has opened the
envelope, then Alice will know whether she has gained her
promotion, and that if Alice has not opened the letter, she
will not know whether she has gained her promotion. As-
suming that ‘opened’ and ‘promoted’ represent that Alice
has opened the letter and has been promoted respectively,
we can represent the above using modal logic as follows:

�B(opened ⊃ (�Apromoted ∨�A¬promoted)) ∧
�B(¬opened ⊃ ¬(�Apromoted ∨�A¬promoted))

Such logics are expressive, but computationally present
several challenges. In the single agent case, Ladner (1977)
showed that satisfiability is NP-complete, while Halpern
and Moses (1985) demonstrated satisfiability is PSPACE-
complete for multiple agents, but only NP-complete if the
nesting of modal formulae is bounded (Halpern 1995). As
such, syntactic approaches to knowledge bases have been
investigated, with Eberle (1974) one of the first to consider
syntactic knowledge bases, and Konolige (1983) the first to
consider syntactic belief bases with nested belief.

Knowledge compilation and prime implicates
Prime implicates have been used to mitigate the complexity
of checking satisfiability and entailment in syntactic knowl-
edge bases. A formula ϕ is a prime implicate of a knowledge
base KB iff KB |= ϕ (it is an implicate) and for all ϕ′ such
that KB |= ϕ′, ϕ′ |= ϕ implies ϕ |= ϕ′ (it is prime).

The challenge is to calculate exactly the set of prime im-
plicates of a knowledge base, and check entailment of a for-
mula against the prime implicates instead of the original
knowledge base. Bienvenu (2008; 2009) presents an algo-
rithm that takes a logic Kn knowledge base and compiles it
into prime implicate normal form (PINF), which is a DNF-
like normal form in which all clauses are prime implicates.
Essentially, a formula in PINF contains exactly the formulae
required to check entailment of another formula, and noth-
ing more. Entailment of a formula on the PINF formula can
be checked in polynomial time, but the cost of generating
the PINF is double-exponential in time and space.

Proper epistemic knowledge bases
Lakemeyer and Lespérance (2012) define a proper epis-
temic knowledge base (PEKB) as a set of restricted formu-
lae, called restricted modal literals (RMLs), of the form:

α ::= p | ¬p | �iα | ♦iα

Thus, a PEKB contains no disjunctive formulae. Note that
RMLs are in negation normal form (NNF), i.e. negation ap-
pears only in front of propositional variables. Any Kn modal



literal can be re-written into NNF using ¬�iϕ ≡ ♦i¬ϕ,
¬♦iϕ ≡ �i¬ϕ, and ¬¬p ≡ p.

Following Bienvenu, Lakemeyer and Lespérance (2012)
show how to compile a PEKB into PINF formula in single-
exponential time and space, and how to check entailment
of this PINF in polynomial time. Thus, by sacrificing ex-
pressiveness, some computational cost can be reduced. Their
entailment algorithm is sound for arbitrary Kn queries, and
complete for PINF formulae and for formulae in a specific
normal form NF , in which the semantic relationship be-
tween formulae is restricted to a certain class. Muise et al.
(2015b) showed that if a PEKB is consistent, then for a
smaller class of queries, compilation to PINF is not required:
the PEKB can be queried directly in polynomial time. Thus,
if one uses a sound belief update mechanism on a PEKB,
then the expensive compilation to PINF can be avoided.

‘Knowing whether’ in epistemic logics
Fan et al. (2015) define knowing whether ϕ such that
M,w |= ∆iϕ iff:

for all v1, v2 ∈ Ri(w) M,v1 � ϕ⇔M,v2 � ϕ

That is, at a world w, agent i knows whether ϕ if and only if
all reachable worlds agree on the truth of ϕ. They also define
an operator ∇iϕ as a shorthand for ¬∆iϕ. Note that this is
not a dual operator, but a negation operator, read as: i does
not know whether ϕ. They show that knowing whether is
in fact equivalent to contingency logic (Humberstone 1995;
Kuhn 1995) and the negation of ‘ignorance’ in ignorance
logic (van der Hoek and Lomuscio 2003; Van Der Hoek and
Lomuscio 2004). The following properties hold for ∆i:

∆iϕ ≡ ∆i¬ϕ ∇iϕ ≡ ♦iϕ ∧ ♦i¬ϕ
�iϕ ⊃ ∆iϕ �iϕ ≡ ∆iϕ ∧ ♦iϕ (under axiom D)

PEKBs are not able to express the notion of knowing
whether, due to the fact that it discusses uncertainty via dis-
junction: ∆iϕ ≡ (�iϕ ∨ �i¬ϕ). As such, a class of prob-
lems that require knowing whether are out of scope. In the
remainder of this paper, we extend the notion of PEKBs to
include the modal operators ∆i and∇i into PEKBs for log-
ics Kn and KDn, without sacrificing the desirable computa-
tional properties of PEKBs.

Extending PEKBs with ‘Knowing whether’
Rather than deal with knowing whether as the disjunction
of �iϕ ∨ �i¬ϕ, we use the ∆i and ∇i operators, in which
∆iϕ specifies that agent i knows whether ϕ holds, and ∇iϕ
is defined as ¬∆iϕ; that is, agent i does not know whether ϕ
holds. First, we extend a definition of RMLs to include the
∆i operators:

α ::= p | ¬p | �iα | ♦iα | ∆iβ
β ::= p | �iβ | ♦iβ | ∆iβ

Thus, the modal literals are in NNF, which includes the re-
striction that a negation never occurs after a ∆i. As with
RMLs, any modal literal, including those with ∆i operators,
can be written into NNF, and∇i can be removed completely:

¬∆iϕ ≡ ∇iϕ ∆i¬ϕ ≡ ∆iϕ
∇i¬ϕ ≡ ∇iϕ ∇iϕ ≡ ♦iϕ ∧ ♦i¬ϕ

M1, w

¬φ1

¬φ2
. . . ¬φ1

¬φ2

M2, w

¬φ1

φ2
. . . ¬φ1

φ2

M3, w

φ1

¬φ2
. . . φ1

¬φ2

M4, w

φ1

φ2

. . . φ1

φ2

Figure 1: Set of models corresponding to the four ∆-
combinations reachable from world w for ∆iφ1,∆iφ2.

In the remainder of this paper, we will use the symbol
P for PEKBs. Also, to simplify the notation, we will con-
sider a conjunction of Kn formulae γ ∧∆iφ1 ∧ . . .∧∆iφl ∧
♦iψ1 ∧ . . . ∧ ♦iψm ∧ �iχ1 ∧ . . . ∧ �iχn, in which γ is a
propositional formula, φ1, . . . , φl, ψ1, . . . , ψm, χ1, . . . , χn
are formulae in Kn (KDn), so that each symbol can be used
to disambiguate the outermost operator of each formula. We
use α to represent RMLs, and ϕ and ψ as general Kn (KDn)
formulae. We use ϕ′ ∈ ϕ to access conjuncts of ϕ, when ϕ
is a conjunction of formulae.

The introduction of ∆i formulae introduces a restricted
form of disjunction. For example, given the set of formu-
lae {∆iφ1,∆iφ2}, at least four models satisfy this: one for
each combinations of [¬]φ1 ∧ [¬]φ2 holding in all possi-
ble worlds. This is shown in Figure 1. Note that for each
model, exactly one combination of [¬]φ1∧ [¬]φ2 holds at all
possible worlds at w. We will refer to such combinations as
∆i-combinations. The set of all ∆i-combinations for agent
i in PEKB P is defined formally as:

∆i-combs(P) = {
∧

∆iψ∈P′

¬ψ ∧
∧

∆iψ∈(P\P′)

ψ | P′ ⊆ P}

Theorem 1. Given a PEKB ϕ = (γ, . . . , ∆iφ1, . . . , ∆iφl,
♦iψ1, . . . , ♦iψm, �iχ1, . . . , �iχn), we have that ϕ |= ⊥
iff at least one of the following:

(a) γ |= ⊥;
(b) ψj ∧ χ1 ∧ . . . ∧ χn |= ⊥ (for some j); or
(c) for all ∆i-combinations φ of ϕ, for some j, φ∧ψj |= ⊥
The final point means all ∆i-combinations conflict with at
least one ψj .

Proof. For the right-to-left case, assume that the left side is
false, and the formula is instead satisfiable. Then there must
be some M,w such that M,w |= γ ∧∆iφ1 ∧ . . . ∧∆iφl ∧
♦iψ1∧. . .∧♦iψm∧�iχ1∧. . .∧�iχn. From this,M,w |= γ
holds trivially, therefore γ is satisfiable. If M,w |= ♦iψ1 ∧
. . .∧♦iψm∧�iχ1∧. . .∧�iχn, then there exists a worldw′
reachable fromw such thatM,w′ |= ψj∧χ1∧. . .∧χn for all
j, therefore, it must be thatψj∧χ1∧. . .∧χn is satisfiable, for
all j. For part (c), consider some ∆iφu. If M,w |= ∆iφu,
then M,w |= �iφu or M,w |= �i¬φu. If there are several
∆i formulae, M,w |= ∆iφ1 ∧ . . . ∧ ∆iφl ∧ ♦iψ1 ∧ . . . ∧
♦iψm, it must be that for some ∆i-combination φ, we have
that M,w |= �iφ. Therefore, for all j, there exists a world
w′ such that M,w′ |= φ ∧ ψj , i.e. φ ∧ ψj is satisfiable.

For the left-to-right case, suppose that the right side is
false. Construct a Kripke structure and a set of worlds such
that M,w |= γ, and M,wj |= ψj ∧ χ1 ∧ . . . χn for all



j, and where all wj are reachable from w. It is clear that
M,w |= γ ∧ ♦iψ1 ∧ . . . ∧ ♦iψm ∧ �iχ1 ∧ . . . ∧ �iχn.
Further, we know that for some ∆i-combination φ, we have
φ ∧ ψj is satisfiable for all j. Take this φ and add it to each
reachable world w′. φ is equivalent to some ∆i-combination
of P. Therefore, for each φu, we have that M,wj |= φu for
all wj or M,wj |= ¬φu for all wj , and therefore, M,w |=
∆iφ1 ∧ . . . ∧ ∆iφl. Combining with the above, M,w |=
γ∧∆iφ1∧. . .∧∆iφl∧♦iψ1∧. . .∧♦iψm∧�iχ1∧. . .∧�iχn,
so the formula is satisfiable.

This theorem provides us with a way to determine sat-
isfiability of Kn PEKBs, but also with a starting point for
pre-compiling PEKBs into prime implicate normal form.

For the remainder of the paper, we use ∆i-combs⊆(P)
to denote the ∆i-combinations of all subsets of PEKB P,
defined as:

∆i-combs⊆(P) =
⋃
P ′⊆P

∆i-combs(P′) \ {¬ψ | ∆iψ ∈ P}

A formula φ ∈ ∆i-combs⊆(P) is thus a conjunction of
positive and negated elements in ∆i formulae. E.g., if
P = {∆iφ1,∆iφ2}, then ∆i-combs⊆(P) = {φ1, φ2, φ1 ∧
φ2, φ1 ∧¬φ2,¬φ1 ∧φ2,¬φ1 ∧¬φ2}. Note that ¬φ1,¬φ2 /∈
∆i-combs⊆(P) as ∆iφ1 ≡ ∆i¬φ1.
Definition 1 (Prime implicate normal form (PINF)). A set
of formulae Σ, is in prime implicate normal form (PINF) iff
every formula in Σ is a prime implicate (as defined in the
background section), and every formula is a term, where a
term is defined by:

T ::= p | ¬p | �iT | ♦iT | ∆iT | T ∧ T

Note that this definition is different from of Bienvenu (2009)
(and adopted by Lakemeyer and Lespérance (2012)) as it
pertains only to terms, not arbitrary Kn formula.

For example, the set of formulae {�i�j(p ∧ q),∆i♦jp}
is not in PINF because for any model in which �i�jp holds,
it must be that ∆i♦jp also holds.

Next, we introduce a function PEKB2PINF that con-
verts PEKBs into a PINF formula such that the PINF for-
mula is logically equivalent to the original PEKB, but con-
tains only the prime implicates of PEKB. Step 1 first deter-
mines potential prime implicates that result from combining
multiple RMLs, steps 2–4 then eliminate non-prime impli-
cates, such as the example above, finally, step 5 determines
if there are contradictions in the PEKB.
Definition 2 (PEKB2PINF (P)). The function
PEKB2PINF takes a conjunction of terms2 P, and
returns a PINF formula Σ. First, we define the following:

Bi(P) = {ϕ | �iϕ ∈ P}
Di(P) = {ϕ | ♦iϕ ∈ P}
Wi(P) = {ϕ | ∆iϕ ∈ P}
Prop(P) = {l | l is a non-modal literal ∧ l ∈ P}

The PEKB2PINF algorithm is then defined as follows:
2Note that a PEKB is just a restricted form of this where the

terms are all restricted modal literals.

1. Let Fi(P) =
∧
ϕ∈Bi(P) ϕ.

Let Γ(P) = Prop(P) ∪
{♦i(ϕ ∧ Fi(P)) | ϕ ∈ Di(P) ∧Bi(P) 6= ∅} ∪
{♦i(ϕ) | ϕ ∈ Di(P) ∧Bi(P) = ∅} ∪
{�i(Fi(P)) | Bi(P) 6= ∅} ∪
{∆i(Ψ) | Ψ ∈ ∆i-combs⊆(Wi(P))}.

2. For each M(ϕ) ∈ Γ(P), where M is either ♦i or �i,
replace it by M(PEKB2PINF (ϕ)).

3. For all ♦iϕ1,∆iϕ2 ∈ Γ(P), if ϕ1 |= ϕ2, remove ∆iϕ2

from Γ(P), and replace every �iχ ∈ Γ(P) with �i(χ ∧
ϕ2).

4. For all �iϕ1, ∆iϕ2 ∈ Γ(P), if ϕ1 |= ϕ2, remove ∆iϕ2.
5. If any of the following hold, return ⊥ :

(a) ♦i⊥ is in Γ(P)

(b) both p and ¬p are in Γ(P),
(c) if ∆iϕ1,♦iϕ2, and♦iϕ3 are in Γ(P) and ϕ1∧ϕ2 |= ⊥

and ¬ϕ1 ∧ ϕ3 |= ⊥.
Otherwise return Σ =

∧
ψ∈Γ(P) ψ.

Note that each PINF formula will contain at most one �iχ
for each i: the prime implicate formed from all �i formulae.
This is similar to Lakemeyer and Lespérance’s algorithm,
except that it handles ∆i formulae.

The prime implicates of ∆i formulae deserve discussion.
Given ∆iφu and ∆iφv , six prime implicates result: ∆iφu,
∆iφv , ∆i(φu ∧ φv), ∆i(φu ∧ ¬φv), ∆i(¬φu ∧ φv), and
∆i(¬φu ∧ ¬φv). That is, all conjunctions of [¬]φu and
[¬]φv are ‘known whether’, and all are prime implicates.
While ∆iφu,∆iφv |= ∆i([¬]φu ∧ [¬]φv), the reverse does
not hold. Consider if agent i knows whether φu and knows
whether φv , then clearly agent i knows whether φu ∧ φv .
However, if agent i knows whether φu∧φv because it knows
that ¬(φu ∧ φv), this does not imply that it knows whether
φu (nor φv), because it may only know that their conjunction
is false without knowing their individual truth values.

Lemma 1. Given a PINF formula Σ such that Σ ≡ P for a
given PEKB P, then ∆i(φu ∧ φv) ∈ Σ iff both ∆iφu and
∆iφv are in Σ (for φu 6≡ φv).

Proof. As discussed above, ∆i(φu ∧ φv) 6|= ∆iφu (nor
φv). However, ∆i(φu∧φv) is a prime implicate of P iff both
∆iφu and ∆iφv are in P, because conjunction is not allowed
in any ∆iφj ∈ P, and ∆iφu ∧∆iφv |= ∆i(φu ∧ φv).

Lemma 2. Given a PINF formula Σ = γ ∧ ∆iφ1 ∧ . . . ∧
∆iφl ∧♦iψ1∧ . . .∧♦iψm∧�iχ such that Σ ≡ P for some
PEKB P, and a formula ε in NNF:

(a) Σ |= l iff l ∈ γ (where l is a non-modal literal)
(b) Σ |= ∆iε iff ∆iΣ

′ ∈ Σ s.t. Σ′ ≡ ε or
Σ |= �iε ∨�i¬ε;

(c) Σ |= ♦iε iff ♦iΣ′ ∈ Σ s.t. ♦iΣ′ |= ♦iε;
(d) Σ |= �iε iff χ |= ε

Proof. The case in which Σ |= ⊥ is trivial, and we omit it.
Consider (a). By Theorem 1, Σ ∧ ¬l |= ⊥ iff γ |= l.

Consider (b). Σ |= ∆iε is equivalent to Σ∧♦iε∧♦i¬ε |=
⊥ and, by Theorem 1, either: (i) χ |= ε or χ |= ¬ε; or (ii)



φ |= ε or φ |= ¬ε for all ∆i-combinations φ. If (i) holds then
Σ |= �iε or Σ |= �i¬ε, and therefore Σ |= �iε ∨ �i¬ε. If
(ii) holds then since any ∆iφu ∈ Σ either occurs in original
PEKB, or is a combination in ∆i-combs⊆(P) of the original
PEKB (or both), then by Lemma 1, we know that every such
∆iφu must be in Σ. So there is some ∆iΣ

′ ∈ Σ such that
Σ′ ≡ ε. Note that the case where ε is of the form ε1 ∨ ε2 is
not considered because ∆iε is in NNF, and ∆i(ε1 ∨ ε2) ≡
∆i¬(ε1 ∨ ε2) ≡ ∆i(¬ε1 ∧ ¬ε2).

Consider (c). If Σ |= ♦iε then Σ ∧�i¬ε |= ⊥, and from
Theorem 1, there must be a ψj such that ψj ∧ χ |= ε and
therefore, ♦i(ψj ∧ χ) |= ♦iε. Because Σ is in PINF, then
either ♦i(ψj ∧ χ) ∈ Σ or for some other ♦iΣ′ ∈ Σ, and
♦iΣ′ |= ♦i(ψj ∧ χ). Therefore, ♦iΣ′ |= ♦iε.

Consider (d). By Theorem 1, Σ |= �iε iff Σ∧♦i¬ε |= ⊥
iff either: (i) χ |= ε; or (ii) for all φ, either there exists a ψj
such that φ ∧ ψj is unsatisfiable or φ ∧ ¬ε is unsatisfiable.
Now consider any model M,w such that, M,w |= �iφ ∧
♦iψ1 ∧ . . . ∧ ♦iψm. It must be that M,w |= �iε, because
there is no ψj such that φ∧ψj is unsatisfiable. Similarly, for
any model M,w such that M,w |= �i¬φ ∧ ♦iψ1 ∧ . . . ∧
♦iψm, it must be that M,w |= �iε for the same reason.
Therefore, Σ |= �iε. However, if Σ |= �iε, and Σ is in
PINF, then it must be that �iχ |= �iε, and thus χ |= ε,
which is the same as (i).

Theorem 2. PEKB2PINF returns a PINF formula that is
equivalent to the original PEKB P; that is Γ(P) ≡ P and
every formula in Γ(P) is a prime implicate.

Proof. The proof is an extension of the proof for Lemma 2.
We show the least straightforward case: ∆iε. If ∆iε is a
prime implicate of a PEKB P, then P |= ∆iε. As ar-
gued in the proof of Lemma 2, this means that either: (i)
P |= �iε ∨ �i¬ε; or (ii) there is some combination φ ∈
∆i-combs⊆(P) such that ∆iφ ≡ ∆iε. Because ∆iε is a
prime implicate, (ii) means that ∆iφ should be in Γ(P) for
all φ ∈ ∆i-combs⊆(P), which is the case. However, for
case (i), if either �iε or �i¬ε holds, then ∆iε cannot be
a prime implicate, because �iε |= ∆iε and �i¬ε |= ∆iε.
Thus, if �iϕ1,∆iϕ2 ∈ Γ(P) and ϕ1 |= ϕ2, then ∆iϕ2

should be excluded from Γ(P), which occurs in step 4 of
PEKB2PINF .

Theorem 3. The space and time complexity of
PEKB2PINF is exponential in size and depth of P.

Proof. Checking entailment between two RMLs (steps 3
and 4) can be done in linear time in the depth of the short-
est RML. The algorithm from Lakemeyer and Lespérance
(2012) has worst-case time complexity of O(|P|d+2), with
d being the modal depth of ϕ (accounting for the recur-
sive calls in step 2). Our algorithm must also derive 2n ∆
formulae in each recursive call, in which n is the number
of ∆ formula in P. Therefore, the worst-case complexity is
O(|P|d+2+|P|). The proof of the space bound follows in a
similar manner.

Query evaluation
In this section, we consider a querying mechanism, V , that
takes a PINF formula Σ, and query ϕ in NNF, and returns 1
or 0, in which 1 is interpreted as true and 0 as unknown. This
query mechanism is exactly as Lakemeyer and Lespérance
(2012), except that we need to define V for ∆iϕ.

Definition 3 (V [Σ, ϕ]). V [Σ, ϕ] = 1 if Σ = ⊥, otherwise:

V [Σ,>] = 1 and V [Σ,⊥] = 0;

V [Σ, l] = 1 if l ∈ Σ, 0 otherwise;

V [Σ,�iϕ] =

{
1 for some �iΣ′ ∈ Σ,V [Σ′, ϕ] = 1

0 otherwise;

V [Σ,♦iϕ] =

{
1 for some ♦iΣ′ ∈ Σ,V [Σ′, ϕ] = 1

0 otherwise;

V [Σ,∆iϕ] =


1 if V [Σ,�iϕ ∨�i¬ϕ] = 1 or

if ∆iϕ ∈ Σ

0 otherwise;

V [Σ, ϕ ∨ ψ] = max(V [Σ, ϕ],V [Σ, ψ]);

V [Σ, ϕ ∧ ψ] = min(V [Σ, ϕ],V [Σ, ψ]);

Thus, V is a simple database query on the PINF formula
for a knowledge base using a structural subsumption simi-
lar to that of Bienvenu (2009), Lakemeyer and Lespérance
(2012) and Muise et al. (2015b).

Theorem 4 (Soundess of V ). Let Σ be a PEKB in PINF,
and ϕ a formula in NNF. If V [Σ, ϕ] = 1 then Σ |= ϕ.

Proof. Soundness follows directly from Lemma 2, except
for the first three cases, and the conjunction and disjunction
cases, which all hold trivially.

Comment. To obtain a sound query mechanism, we do
not need to consider all φ ∈ ∆i-combs⊆(P). PEKB2PINF
could simply keep only those ∆iα formulae from the origi-
nal PEKB, and re-write queries of the form ∆i(φu ∧ φv) to
∆iφu ∧∆iφv . It is easy to show that this mechanism would
be sound, but that the formula produced by PEKB2PINF
would not be in PINF, because ∆i(φu∧φv) is a prime impli-
cate. However, the complexity of this compilation approach
would be O(|P |d+2) instead of O(|P |d+2+|P |).

While V is sound, it is quite clearly incomplete. For ex-
ample, consider the simple query (p ∧ p ⊃ q) ⊃ q, which is
a tautology, but for which V [Σ, ϕ] = 0.

Definition 4 (Query normal form). We define a normal form
for queries, called query normal form (QNF):

T ::= p | ¬p | �iT | ♦iT | ∆iT | T ∧ T
C ::= T | C ∨ C

A query is therefore a disjunction of terms. A formula in
QNF is clearly in DNF (and therefore NNF).

Definition 5 (Logical Separability). From Lakemeyer and
Lespérance (2012): the set of formulae P is logically sepa-
rable iff for every consistent set of formulae P ′ this holds:

if P ∪ P ′ |= ⊥ then ∃ϕ ∈ P, s.t. P ′ ∪ {ϕ} |= ⊥



Logical separability captures the property that there are
‘no logical puzzles hidden’ within P . For example, the set
{�ip,�i(p ⊃ q)} is not logically separable, because we can
infer �iq from the combination of the two, yet the formula
♦i¬q is consistent with each individual formula.

Theorem 5 (Completeness of V for QNF queries.). Let Σ
be a PEKB in PINF and ϕ a logically-separable formula in
QNF. Then V [Σ, ϕ] = 1 iff Σ |= ϕ.

Proof. The left-to-right direction follows from Theorem 4.
For the other direction, if Σ ≡ ⊥, the proof is immediate. If
Σ 6≡ ⊥, we prove by induction on the length of ϕ. The cases
for propositions, �iϕ,♦iϕ, and ϕ∧ψ hold from Lakemeyer
and Lespérance (2012) (Theorem 6). The ϕ ∨ ψ follows the
same argument. Assume that the theorem holds for formula
of length n, and that ϕ is of length n+1. If Σ |= ϕ ∨ ψ, then
Σ∪{¬ϕ,¬ψ} is inconsistent. Because the query is logically
separable, then Σ∪{¬ϕ} or Σ∪{¬ψ} is inconsistent. Thus
Σ |= ϕ or Σ |= ψ, and inductively, V [Σ, ϕ ∨ ψ]. The ∆iϕ
case holds from Lemma 2.

Consistent knowledge bases
In this section, we consider a natural extension for KDn,
namely the case when a KDn knowledge base is consis-
tent; for example, a sound belief update mechanism is used
to add new formulae to the PEKB. Working with consis-
tent PEKBs, we can define a polynomial entailment mech-
anism that is complete for a restricted set of QNF formu-
lae, and sound, but which can be performed on uncompiled
PEKBs, thereby avoiding the exponential compilation step
similar to PEKB2PINF . This is because we can re-write
non-separable queries such as ∆iϕ,♦iϕ |=KDn �iϕ as
∆iϕ,♦iϕ |=KDn ∆iϕ ∧ ♦iϕ, which is separable. For the
remainder of this section, we use |= to mean |=KDn .

Lemma 3. Given a PEKB P = γ ∧ ∆iφ1 ∧ . . . ∧ ∆iφl ∧
♦iψ1 ∧ . . . ∧ ♦iψm ∧ �iχ1 ∧ . . . ∧ �iχn and an RML α,
then the following hold in logic KDn:

(a) P |= l iff l ∈ γ (where l is a non-modal literal)

(b) P |= ∆iα iff ∆iα ∈ P or
�iα′ ∈ P s.t. α′ |= α or α′ |= ¬α;

(c) P |= ♦iα iff ♦iα′ ∈ P s.t. α′ |= α or
�iα′ ∈ P s.t. α′ |= α

(d) P |= �iα iff P |= ∆iα ∧ ♦iα

Proof. Case (a) is straightforward. For (b), P |= ∆iα iff
P ∧ ♦iα ∧ ♦i¬α |= ⊥, and by Theorem 1, either: χ1 ∧
. . . χn |= α or χ1 ∧ . . . χn |= ¬α; or (ii): φ |= α or φ |= ¬α
for all ∆i-combinations φ. If (i) holds, then P |= �iα∨�iα.
If (ii) holds, then we know there is some φ such that φ ≡ α.
Because α is an RML, then φ must also be an RML, and
therefore ∆iφ ∈ P.

For case (c), if P∧�i¬α |= ⊥ then by Theorem 13, there
is a ψv such that ψv∧χ1∧ . . .∧χn |= α. Because P contains
only RMLs, it cannot be that ♦i(ψv ∧χu) ∈ P for any ψv ∧

3In fact, the case for KDn is slightly different, but does not
affect the proof for consistent knowledge bases.

χu. Further, because α is an RML, it must be that ψv |=
α or χu |= α for some u, and therefore ♦iψv |= ♦iα or
�iχu |= ♦iα. Case (d) holds trivially from the equivalence
�iϕ ≡ ∆iϕ ∧ ♦iϕ in logic KDn.

Definition 6 (Reduced Query Normal Form). We define re-
duced query normal form (reduced QNF) as:

T ::= p | ¬p | �iT | ♦iT | ∆iT
C ::= T | C ∨ C | C ∧ C

Reduced QNF formulae are therefore Boolean combinations
of RMLs. They differ from QNF formulae because conjunc-
tions are not permitted inside modal operators.

Definition 7 (U [P, ϕ]). Given a PEKB, P, and a query ϕ in
reduced QNF, the query mechanism U [P, ϕ] returns 1 for
true and 0 for unknown: U [P,>] = 1, U [P,⊥] = 0, or:

U [P, l] = 1 if l ∈ P, 0 otherwise;

U [P,♦iα] =

{
1 U [Bi(P), α] = 1 or

for some ♦iα′ ∈ P,U [{α′}, α] = 1
0 otherwise;

U [P,∆iα] =

{
1 U [Bi(P), α ∨ ¬α] = 1 or

if ∆iα ∈ P
0 otherwise;

U [P,�iα] = U [P,∆iα ∧ ♦iα]

U [P, ϕ ∧ ψ] = min(U [P, ϕ],U [P, ψ])

U [P, ϕ ∨ ψ] = max(U [P, ϕ],U [P, ψ])

Theorem 6. Given a PEKB P and a query ϕ in reduced
QNF, the worst-case complexity of U [P, ϕ] is polynomial
on the size of P.

Proof. The worst-case complexity isO(|P|·d), in which d is
the depth of the knowledge base. In the worst case, for each
sub-formula in ϕ, U [P, ϕ] would be required to iterate over
each RML in P, recursively calling U up to d times.

Theorem 7 (Soundness and completeness of U [P, ϕ]). Let
P be a set of RMLs and ϕ a logically-separable reduced QNF
formula. Then U [P, ϕ] = 1 iff P |=KDn

ϕ.

Proof. This follows immediately from Lemma 3, except
the for simple > and ⊥ cases, which are trivial, and the con-
junction and disjunction cases, which can be proved in the
same way as the proof for soundness of V (Theorem 4).

Proposition 1. For an arbitrary KDn formula ϕ, there is
an equivalent formula ϕ′ in reduced QNF that is at worst
exponentially larger than ϕ, and that for a given PEKB P,
P |= ϕ iff P |= ϕ′.

For PEKBs, the three modal operators distribute over con-
junction and disjunction (e.g. �i(ϕ ∧ ψ) ≡ �iϕ ∧ �iψ
and P |= ∆i(ϕ ∧ ψ) iff P |= ∆iϕ ∧ ∆iψ, in which P is
a PEKB), and the resulting formula is at worst linear in the
size of the original formula. The only exception is the rule
rule P |= ♦i(ϕ ∧ ψ) iff P |= (�iϕ ∧ ♦iψ) ∨ (♦iϕ ∧�iϕ),
which produces a formula that is at worst 2n the size of



the original formula, where n is the nesting of ♦ operators.
However, if the depth of the query formula is considerably
smaller than the size of the knowledge base, compiling the
query into reduced QNF is more attractive than compiling to
PINF.

Conclusions and future work
In this paper, we introduced the notion of ‘knowing whether’
into proper epistemic knowledge bases. The concept of
knowing whether is not as expressive as disjunction, but
adds a useful level of expressiveness into the PEKB frame-
work. We show that for the logic Kn, we can maintain a
polynomial entailment mechanism at the exponential cost of
pre-compilation (as in the original PEKB definition (Lake-
meyer and Lespérance 2012)), and for the logic KDn, we
can maintain the polynomial entailment query mechanism
presented in more recent work (Muise et al. 2015b).

In future work, we will investigate notions of group belief
and knowledge in PEKBs, such as common belief and com-
mon knowledge. We will also investigate how to perform
sound and complete belief update on a PEKB to ensure that
it remains consistent after an update.
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