Fast d-DNNF Compilation with sharpSAT

Christian Muise

Sheila Mcllraith J. Christopher Beck Eric Hsu

Department of Computer Science, University of Toronto, Toronto, Canada. M5S 3G4.
{cjmuise, sheila, eihsu}@cs.toronto.edu jcb@mie.utoronto.ca

Abstract

Knowledge compilation is a valuable tool for dealing with
the computational intractability of propositional reasoning.
In knowledge compilation, a representation in a source lan-
guage is typically compiled into a target language in order to
perform some reasoning task in polynomial time. One par-
ticularly popular target language is Deterministic Decompos-
able Negation Normal Form (d-DNNF). d-DNNF supports ef-
ficient reasoning for tasks such as consistency checking and
model counting, and as such it has proven a useful represen-
tation language for Bayesian inference, conformant planning,
and diagnosis. In this paper, we exploit recent advances in
#SAT solving in order to produce a new state-of-the-art CNF
— d-DNNF compiler. We evaluate the properties and per-
formance of our compiler relative to C2D, the de facto stan-
dard for compiling to d-DNNF. Empirical results demonstrate
that our compiler is generally one order of magnitude faster
than C2D on typical benchmark problems while yielding a
d-DNNF representation of comparable size.

1 Introduction

To deal with the intractability of propositional reasoning
tasks, one can sometimes compile a propositional theory
from a source language into a target language that guaran-
tees tractability of the task. This compilation process, popu-
larly referred to as knowledge compilation, has proven an ef-
fective tool for dealing with many practical reasoning prob-
lems (e.g., (Darwiche and Marquis 2002)).

Perhaps the best known target language is the language
captured by Ordered Binary Decision Diagrams (OBDDs),
a data structure that is commonly used in circuit synthesis
and verification (Ranjan et al. 1995). Here we are interested
in Deterministic Decomposable Negation Normal Form (d-
DNNF), a strict superset of OBDDs that is also more suc-
cinct. d-DNNF supports efficient reasoning for tasks such as
consistency checking and model counting. d-DNNF has also
been exploited more recently for a diversity of Al applica-
tions including Bayesian reasoning (Chavira, Darwiche, and
Jaeger 2006), conformant planning (Palacios and Geffner
2006), and diagnosis (Siddiqi and Huang 2008).

The de facto standard for CNF — d-DNNF compilation
is C2D, a tool developed and refined by Darwiche and col-
leagues over a number of years.! Although c2D is well
designed and optimized, CNF — d-DNNF compilation can
still be slow. Knowledge compilation has traditionally been

'http://reasoning.cs.ucla.edu/c2d/

characterized as an off-line process and therefore its pro-
cessing time can often be rationalized by amortizing it over
numerous subsequent queries. However, more recent use of
d-DNNF in tasks such as planning and diagnosis has been
problem specific, challenging this characterization and em-
phasizing the need for fast compilation.

Motivated by this need, in this paper we propose a
new CNF — d-DNNF compiler, DSHARP (available online
at http://www.haz.ca/research/dsharp/). Our
compiler builds on the research results by Huang and Dar-
wiche showing that we can extract target languages such as
d-DNNF from the trace of an exhaustive search of a propo-
sitional theory (Darwiche 2004). To this end, we construct
our compiler by appealing to a state-of-the-art #SAT solver,
sharpSAT (Thurley 2006). Our compiler exploits two signif-
icant features of sharpSAT that distinguish it from previous
CNF — d-DNNF compilers: dynamic decomposition, and
implicit binary constraint propagation.

Our objective in constructing DSHARP was to develop a
state-of-the-art CNF — d-DNNF compiler that was faster
than C2D, while preserving the size of the output. We eval-
uated the performance of our compiler on 300 problem in-
stances over eight problem domains taken from SatLib? and
the Fifth International Planning Competition.> DSHARP
solved more problem instances than C2D in the time al-
lowed, showing a significant improvement in run time. The
size of the resulting d-DNNF representation was maintained,
and was on average five times smaller. In addition to these
experiments, we also delved deeper into the workings of our
compiler to attempt to determine the components that con-
tributed significantly to this improved performance. To this
end we did extensive ANOVA testing, identifying several
components of our system as being critical to this impres-
sive speedup.

In Section 2, we review some basic terminology related
to d-DNNF. We follow in Section 3 with a review of the
relationship between knowledge compilation and the search
trace of an execution of the Davis, Putnam, Logemann, and
Loveland algorithm (DPLL) for determining Satisfiability
(Davis, Logemann, and Loveland 1962), and a discussion
of our approach to developing DSHARP. In Section 4 we
present our experimental results, and conclude with a dis-
cussion in Section 5.

http://www.satlib.org/
Shttp://www.ldc.usb.ve/~bonet/ipc5/

2 Preliminaries

In (Darwiche and Marquis 2002) the authors proposed a so-
called knowledge compilation map, an analysis of a num-
ber of target compilation languages with respect to two key
features: succinctness of the target language, and the class
of queries and transformations that the language supports in
polytime. The target languages that they analyzed were not
restricted to classical “flat” normal forms such as CNF or
DNEF, but also include a relatively large class of languages
based on directed acyclic graphs (DAGs). This class of lan-
guages included both OBDDs and d-DNNF, and helps high-
light the benefit that can be yielded by an alternative charac-
terization of languages in terms of a graph structure.

The knowledge compilation map proposed a hierarchy of
target languages. The root of the map is Negation Normal
Form (NNF), a DAG in which the label of each leaf node
is a literal, TRUE, or FALSE, and the label of each internal
node is a conjunction (A) or a disjunction (V). While NNF
is technically not a target language itself (since it does not
permit a polytime clausal entailment test) there are two dis-
tinct subsets of NNF whose members are target languages—
a flat subset and a nested subset. Our interest here is with the
nested subset. We distinguish members of the nested subset
by their properties including decomposability, determinism,
and smoothness. From these properties, a subset relation is
induced among the languages. The languages are then char-
acterized with respect to the tasks they enable in polytime.
The set of tasks considered includes consistency, validity,
clausal entailment, implicant checking, equivalence, senten-
tial entailment, model counting, and model enumeration.

Here we study compilation to d-DNNF. d-DNNF is the
subset of NNF satisfying decomposability and determinism.
More precisely, let Vars(n) be the propositional variables
that appear in the subgraph rooted at n, and let A(n) denote
the formula represented by n and its descendants. Decom-
posability holds when Vars(n;) N Vars(n;) = 0 for any
two children n; and n; of an and node of n. Determinism
holds when A(n;) A A(n;) is logically inconsistent for any
two children n; and n; of an or node of n.

Alternatively, we can understand d-DNNF as a set of well-
formed formulae of the following form. We define NNF to
be the family of boolean formulae that are built from the
operators V, A, and —, with the added restriction that all —
operators exist only at the literal level. Decomposable Nega-
tion Normal Form (DNNF) is the subset of NNF formulae
whose members additionally have the property that the for-
mula operands of A do not share variables. Finally, d-DNNF
is the subset of DNNF whose members have the additional
property that the formula operands of V are inconsistent.

d-DNNF permits polytime (in the size of the represen-
tation) processing of clausal entailment, model counting,
model minimization, model enumeration, and probabilistic
equivalence testing (Darwiche 2004). The conceptualiza-
tion of d-DNNF as a directed acyclic and-or graph, helps us
understand its relation to the DPLL trace, described in the
section to follow.

Figure 1: Partial d-DNNF from an exhaustive DPLL trace.

3 DSHARP

The primary objective of this work is to develop a state-of-
the-art CNF — d-DNNF compiler that exploits recent ad-
vances in #SAT technology, with the aim of reducing com-
pilation time while maintaining d-DNNF size relative to ex-
isting compilers. We use a result of Huang and Darwiche
that shows we can extract target languages such as d-DNNF
from the trace of an exhaustive search of a propositional the-
ory. More specifically, we exploit the exhaustive search per-
formed by the #SAT solver, sharpSAT. In Section 3.1 we
review the Huang and Darwiche result. Then in Section 3.2
we discuss how we employ the features of sharpSAT to in-
stead generate d-DNNF within our new DSHARP compiler.

3.1 d-DNNF from an Exhaustive DPLL Trace

In order to perform the CNF — d-DNNF compilation, we
use the approach introduced in (Huang and Darwiche 2005)
to record the search space of an exhaustive DPLL proce-
dure. The exhaustive DPLL algorithm consists of a DPLL
algorithm modified to find all solutions and, therefore, to
implicitly explore the entire search space. Each node in the
DPLL search tree corresponds to a decision in the exhaus-
tive DPLL search (i.e., a variable selection and a choice of
assignment to either TRUE or FALSE). Decision nodes cor-
respond to or nodes in the d-DNNF representation. For each
or node, we add and nodes as children, corresponding to the
subtrees for the decision variable’s setting, and any variable
assignments inferred by unit propagation. Figure 1 shows
an example of part of the d-DNNF at a decision node where
variable = has been chosen. The theory as it exists before
setting x is X, and the theory solved for each subproblem is
3 Az and ¥ A —x Ay. If any unit propagation occurs due to
the variable being set, we record the implied literals under
the appropriate and node. For example, Figure 1 shows the
literal y as an implication of setting x = FALSE.

Following this approach, we are left with an and-or tree
with the leaf nodes corresponding to literals of the theory.
The tree has all of the required properties to qualify as a
representation for the d-DNNF language: it is in negation
normal form since the negations are at the literal level, it is
decomposable because the children of and nodes are disjoint
theories, and it is deterministic since the immediate children
of every or node has both a literal and its negation making
the conjunction inconsistent.

3.2 DSHARP Components

The sharpSAT solver is the current state-of-the-art solver
for the problem of #SAT. DSHARP, by being built on top
of sharpSAT, uses the algorithm components that lead to
its strong performance. Specifically, we have adapted: dy-
namic decomposition, implicit binary constraint propaga-
tion, conflict analysis, non-chronological backtracking, pre-
processing, and component caching. In this section we de-
scribe each component and the modifications required to
produce a sound CNF — d-DNNF compiler.*

Dynamic Decomposition When we can partition a theory
in CNF into sets of clauses such that no two sets share vari-
ables, then the theory is disjoint and we refer to each set of
clauses as a component. We can compile each component
individually and combine the results, a technique called dis-
Jjoint component analysis.

When used as part of a d-DNNF compiler, disjoint com-
ponent analysis changes the structure of the d-DNNF rep-
resentation; we treat each component as an individual the-
ory, with a corresponding d-DNNF, and add the d-DNNF for
each component as a child to the and node where the theory
was found to be disjoint. For example, consider Figure 2.
After making the decision 1 = TRUE, the theory decom-
poses into two components (corresponding to the parts of
the d-DNNF rooted at each or node marked I).

There are two prevailing methods used for disjoint com-
ponent analysis. In static decomposition, the solver com-
putes disjoint components prior to search while in dynamic
decomposition, the solver computes the components during
search. There is a trade-off between the two approaches
in terms of simplicity, computational difficulty, and effec-
tiveness. C2D uses a form of static decomposition while
DSHARP uses the dynamic decomposition of sharpSAT.

Implicit Binary Constraint Propagation DSHARP em-
ploys a simple form of lookahead during search called im-
plicit binary constraint propagation (IBCP) (Thurley 2006).
In IBCP, a subset of the unassigned variables are heuristi-
cally chosen at a decision node and the impact of assign-
ing any one of them is evaluated. If either assignment
causes unit propagation to derive an inconsistency, the solver
soundly infers the opposite assignment. We test each vari-
able in the chosen set for both TRUE and FALSE.

If IBCP infers a setting, we add the corresponding literal
as a child to the appropriate and node. For example, the lit-
eral /3 in Figure 2 could be created by IBCP, regular unit
propagation, unit propagation of a conflict clause, or any
combination of these — DSHARP views all forms as equiv-
alent for the compilation.

IBCP, via unit propagation, may infer the assignment of a
number of literals during the lookahead. Unless the theory
becomes inconsistent, these implications should be ignored
since the variable setting will be undone. DSHARP main-
tains these temporary implications and includes them when
a variable setting is kept, discarding them otherwise.

*Further information regarding features of the sharpSAT solver
that do not pertain to the modifications required for DSHARP can
be found in (Thurley 2006).

Epyd

Figure 2: Example d-DNNF representation as DSHARP may
generate.

Conflict Analysis / Non-Chronological Backtracking
Conflict analysis refers to the use of conflict clauses to re-
duce search effort. When the solver reaches a dead end in
the search space it records a reason for this conflict in the
form of a new clause. We add the clause to the theory, and
subsequently include it in unit propagation and the compu-
tation of heuristics. Non-chronological backtracking (NCB)
uses learned conflict clauses to backtrack past the most re-
cent assignment to the highest decision node possible while
remaining sound. Both conflict analysis and NCB are widely
used in a variety of SAT-solving applications and solvers
(Beame, Kautz, and Sabharwal 2003).

The addition of conflict clauses during the solving proce-
dure does not change the structure of the d-DNNF. When
DSHARP uses NCB it must step back in the partial d-DNNF
to the correct spot before continuing to record, but this does
not affect the structure of the d-DNNF representation either.

Component Caching Component caching is an extension
of disjoint component analysis where the solver stores the d-
DNNF result for each component and retrieves it if DSHARP
encounters that component again during search. Caching
can have substantial savings when the theory naturally de-
composes during the exhaustive DPLL procedure.

One way of handling component caching in the trace
would be to duplicate the repeated d-DNNF subtree when
DSHARP re-encounters a component. However, if we relax
the assumption that the d-DNNF representation is an and-or
tree, we can simply link to the part of the d-DNNF corre-
sponding to the repeated component. The d-DNNF repre-
sentation then becomes a directed acyclic graph, a more con-
cise form of representing the d-DNNF. Figure 2 (II) shows
an example of the d-DNNF when DSHARP reuses a compo-
nent through component caching.

Pre-processing Finally, pre-processing is a version of
IBCP used at the root node to simplify the starting theory.

Pre-processing performs the same lookahead as IBCP, but
on all variables rather than on a heuristically chosen subset.

If pre-processing does find any variables to set, DSHARP
records these as leaf nodes under a root and node. The
search proceeds as usual with the compiled d-DNNF at-
tached as a child to the root node. Figure 2 (III) is an ex-
ample of the results of pre-processing: literals —l, {1, and
lo were inferred in the pre-processing phase.

4 Experimental Analysis

To evaluate the DSHARP system, we conducted two experi-
ments measuring both compilation speed and the size of the
output representation: (i) a comparison of the performance
of DSHARP with that of C2D and (ii) a fully crossed evalua-
tion of the parameter settings of DSHARP.

Experiments were conducted on a Linux desktop with a
two-core 3.0GHz processor. Individual runs were limited to
a 30-minute time-out and a 1.5GB memory limit.

4.1 DSHARP vs. C2D

We tested DSHARP using a wide range of benchmarks and
compared the results of both run time and output size to that
of C2D. DSHARP was run with its default settings, and C2D
was run with dt_method 4. While there is an extensive range
of settings for c2D, we found that this setting performed
consistently well.> We used the number of edges in the re-
sulting d-DNNF as an indication of the size of the generated
result. This measure is typically used to gauge the size of d-
DNNF representations (e.g., (Huang and Darwiche 2005)).

The benchmarks we used are: uniform random 3SAT
(uf), structured problems encoded as CNF (blocksworld,
bw; bounded model checking, bmc; flat graph colouring,
flat; and logistics, log), and conformant planning problems
converted to CNF as described in (Palacios et al. 2005)
(emptyroom, empr; grid; and sortnet, stnt).

Figures 3(a) and 3(b) show a broad picture of the results
for compiler run time and resulting size, respectively. All
problems solved by at least one solver are present in Figure
3(a) and all problems that both solved are in Figure 3(b).
Points above the y = =z line indicate better performance
of DSHARP (i.e., smaller run time and smaller size, respec-
tively). Figure 3(a) shows that DSHARP achieved a lower
run time on almost all of the problem instances (274 of the
286 solved by at least one solver) while Figure 3(b) demon-
strates that the sizes of the output are comparable, with a few
outliers in favour of each solver.

Table 1 presents the results for each domain and over all
instances. Similar to the plots in Figure 3, the runtime com-
parisons were done on all problems solved by at least one
solver, with a resource violation (time or memory) recorded
as taking 1800 seconds. Size comparisons only consider in-
stances where both DSHARP and C2D were able to find a so-
lution.® On these instances, we present the number of prob-
lems solved in each domain, the mean improvement of run

SA full analysis of many C2D parameter settings is provided in
the appendix.

SWhile 1800s is a reasonable lower bound for time, we have no
such lower bound on the size of the C2D’s output.

time (size), the mean ratio of run time (size) between C2D
and DSHARP, and the number of problems DSHARP does
better or worse for run time (size).

The significance of the differences in mean run time and
size was tested using a randomized paired ¢-test (Cohen
1995) on a per domain basis and over all problems with a
significance level of p < 0.01. A positive value indicates
DSHARP performed better (faster or smaller), and results
marked with a x are statistically significant. The mean ra-
tio is the arithmetic mean of the individual ratio’s for each
problem — the run time (size) of C2D divided by the run
time (size) of DSHARP. A value of k indicates that DSHARP
was k times faster (or smaller) than C2D. We have marked
all metrics where DSHARP outperforms C2D in boldface.

DSHARP solved more instances than C2D in five of the
eight domains and an equal number in the remaining three.
In most domains, DSHARP solved only a few more prob-
lem instances, with the exception of the grid and log do-
mains where DSHARP solved substantially more problems
than c2D. Overall, DSHARP solved 286 of the 300 instances
while C2D only solved 275.

DSHARP was significantly faster in all but one domain
(blocksworld) and it was 27 times faster overall. DSHARP
was at least one order of magnitude faster in all but one do-
main (empty room).

The results for d-DNNF size are more even, as should
be expected from Figure 3(b). In three domains DSHARP
was significantly smaller and in one domain it was signif-
icantly larger. In the remaining domains, the difference in
output size was not statistically significant. When consider-
ing problems from all domains, we found that C2D produced
d-DNNF representations about 5 times larger than DSHARP,
though this difference was not statistically significant.

4.2 The Impact of Parameter Settings

In order to better understand DSHARP’s performance, we in-
vestigated the impact the various parameter settings have on
both compilation time and the size of the generated d-DNNF
representation. Recall that each parameter setting indicates
whether DSHARP uses a given algorithm component or not.
With the exception of dynamic decomposition we can switch
each component on or off independently. The components
are: implicit binary constraint propagation (IBCP), con-
flict analysis (CA), non-chronological backtracking (NCB),
component caching (CC), and pre-processing (PP).

To measure the impact of each component, we performed
a fully crossed Analysis Of Variance (ANOVA): DSHARP
was run on every problem instance for every combination
of parameter settings. ANOVA is a standard statistical tool
for testing the null hypothesis that two or more distributions
have equal mean. In our case, we separately tested the dis-
tribution of run times and output size for each of the pa-
rameter settings. For any parameter or parameter interaction
that was deemed significant by the ANOVA (i.e., for which
the null-hypothesis was rejected), a Tukey Honest Signifi-
cance Difference (TukeyHSD) was performed to determine
the best parameter setting.” A summary of the ANOVA and

7 All statistical tests in this section were performed using the R

100 F

107 f

107

Run time (C2D)

10°f

107 F

107

10

2

107

10° 10"
Run time (DSHARP)

10°

10°

d-DNNF Size (C2D)
=
[S)

10" 10° 10° 10° 10° 10° 10’
d-DNNF Size (DSHARP)

(a) Scatter plot of run time (in seconds) for each problem instance us-
ing C2D (y-axis) or DSHARP (z-axis).

(b) Scatter plot of the number of edges in the generated d-DNNF for
each problem instance using C2D (y-axis) or DSHARP (z-axis).

Figure 3: Run time and size comparison of all problems. Points above the line represent problems where DSHARP was faster
or smaller. Note that all axes are log-scale.

Solved Run time (sec.) d-DNNF Size (edges)

Domain | DSHARP | C2D MI MRI +/- MI MRI +/-

log (4) 2 0 n/a n/a n/a n/a n/a n/a
grid (33) 32 26 | 392.38* | 54.61 | 26/0 1455368.54 | 36.27 | 8/18

stnt (12) 10 9 206.58* | 27.92 7/2 889301.00* | 17.72 8/0

bw (7) 7 6 190.14 | 22.42 4/2 -521.83 | 0.70 1/5
uf (100) 100 100 88.38* | 20.91 | 100/0 6697.87* 1.67 | 80/20

bmc (13) 4 3 758.16* | 14.65 3/0 -1158787.00 | 0.75 1/2
flat (100) 100 100 40.25* | 1346 | 100/0 13005.24* 142 | 82/18
empr (31) 31 31 0.094* | 289 | 23/7 -1323.83* | 0.83 | 0/31
[all(300) [286 [275 | 123.93* [27.73 [263/11 | 161065.71 | 525 [180/94 |

Table 1: Comparative performance of DSHARP relative to C2D. MI is the mean improvement of DSHARP over C2D, where
a positive number indicates an improvement in seconds (for run time) or number of edges (for d-DNNF size). MRI is the
mean relative improvement, the arithmetic mean of C2D’s run time (output size) over that of DSHARP. An MRI > 1 indicates
DSHARP performed better. The ‘4 /-’ column indicates the number of problem instances for which DSHARP performed better
(‘+”) or worse (°-’), over all instances that both systems solved (identical results are not included). Bold text indicates where
DSHARP outperformed C2D, and % indicates the MI values that are statistically significant at p < 0.01. Other than the ‘+ /-’
column, all runtime calculations were performed using all problems in the domain where at least one system found a solution.
A failed run was assigned the time-out value of 1800 seconds (a lower bound on the true run time).

TukeyHSD results is shown in Table 2. For the runtime data,
we included all problem instances solved by at least one set-
ting. Where a setting was unable to find a solution within
the resource limits, we used the time-out (1800 seconds) as
its run time. This run time is a lower-bound on the true run
time. For the output size data, we only included instances
solved by all parameter settings as we do not have a reason-
able lower-bound on output size for the unsolved instances.
Only those domains where DSHARP was able to solve more
than half of the problems are shown.

In terms of run time, CA and IBCP appear most often as
significant factors for low run times. These results do not

statistical package (R Development Core Team 2006).

come as a surprise given their contribution to improving the
speed of #SAT solving (Thurley 2006). CC sometimes helps
(e.g., in grid, empr, and overall). The other components ap-
pear to have little significant impact.

For the compiled d-DNNF size, CC is the prevailing fac-
tor with significance over most problem instances. This ef-
fect is reasonable since DSHARP reuses parts of the d-DNNF
when CC is able to recognize repeated sub-problems. It is
interesting to note that on the uf instances, CA (alone or in
combination) resulted in larger output. We do not yet have
an understanding of this result though it raises the important
point of a possible trade-off between compilation speed and
output size given the positive impact CA had on run time.

We should also note that the dynamic decomposition em-

Domain Sig. (Time) | Sig. (Size)
CA+ CA-
uf (100,27) IBCP+ CC+
CA+:IBCP+ | CA-:.CC+
bw (7,5) CA+ PP-
CA+ CC+
flat (100,7) IBCP+
CA+:IBCP+
grid (33,27) CC+ CC+
sortnet (12,10) | PP-
empr (31,5) CC+ CC+
CA+ CC+
all (283,81) CC+
IBCP+
CA+:IBCP+

Table 2: Results of the ANOVA and TukeyHSD tests for
each parameter of DSHARP. All significant (p < 0.01) pa-
rameters and interactions in terms of either run time or d-
DNNF representation size are shown. For each parameter
we indicate whether using it was advantageous (‘+’) or not
using it was advantageous (‘-’). The “Domain” column in-
cludes (x,y) where z is the number of instances solved by at
least one setting and y is the number solved by all settings.

ployed by DSHARP empowers the component caching that
takes place during compilation. Without this decomposition
scheme, component caching would be far less effective since
the number of components available is greatly reduced —
DsSHARP would effectively be recording large disjoint theo-
ries as a single component.

5 Conclusions

d-DNNF is proving to be an effective language for a diver-
sity of practical Al reasoning tasks including Bayesian in-
ference, conformant planning, and diagnosis. Many of these
applications require the CNF — d-DNNF compilation to be
performed on a problem-specific basis, and as such com-
pilation time is included in the measure of performance of
the overall system. This in turn is increasing the demand
for CNF — d-DNNF compilers to be fast while continuing
to produce high quality representations. In this paper we
address this need through the development of a new state-
of-the-art CNF — d-DNNF compiler that builds on #SAT
technology, and in particular on advances found in the #SAT
solver, sharpSAT. Our system, DSHARP, exploits the DPLL
trace constructed for model counting to instead construct a
d-DNNF representation of the boolean theory. DSHARP ex-
ploits the latest advances in #SAT technology, most notably
dynamic decomposition and IBCP, but also conflict analysis,
NCB, component caching, and pre-processing.

We tested DSHARP on 300 problems in eight domains
taken from benchmark problem sets in SAT solving and
planning. DSHARP solved more problem instances than C2D
in the time allowed, averaging an improvement of 27 times
in run time while maintaining the size of the d-DNNF gen-
erated by C2D. We also took a deeper look at DSHARP’s
behaviour, performing an Analysis Of Variance to try to
identify components of the DSHARP system that contributed

most significantly to its performance. We found that con-
flict analysis and implicit binary constraint propagation ap-
peared most frequently as contributing significantly to re-
ducing the run time, and that component caching was vital
in generating d-DNNF representations of a reasonable size.
We were unable to evaluate the impact of dynamic decom-
position because it could not be disabled. Nevertheless, we
conjecture that it plays a significant role in improving per-
formance, particularly in concert with component caching,
as it has done with sharpSAT. In future work, we plan to
experiment with further optimizations of our compiler and
with its use in more diverse Al applications.

6 Acknowledgements

The authors gratefully acknowledge funding from the On-
tario Ministry of Innovation and the Natural Sciences and
Engineering Research Council of Canada (NSERC). We
would also like to thank the anonymous referees for useful
feedback on earlier drafts of the paper.

References

Beame, P.; Kautz, H.; and Sabharwal, A. 2003. Understanding
the power of clause learning. In International Joint Conference
on Artificial Intelligence, volume 18, 1194-1201.

Chavira, M.; Darwiche, A.; and Jaeger, M. 2006. Compiling
relational bayesian networks for exact inference. International
Journal of Approximate Reasoning 42:4-20.

Cohen, P. R. 1995. Empirical Methods for Artificial Intelligence.
The MIT Press, Cambridge, Mass.

Darwiche, A., and Marquis, P. 2002. A knowledge compilation
map. Journal of Artificial Intelligence Research 17:229-264.

Darwiche, A. 2004. New advances in compiling CNF to de-
composable negational normal form. In Proceedings of European
Conference on Artificial Intelligence.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A ma-
chine program for theorem-proving. Communications of the ACM
5(7):394-397.

Huang, J., and Darwiche, A. 2005. DPLL with a trace: from SAT

to knowledge compilation. In International Joint Conference On
Artificial Intelligence, 156—162.

Palacios, H., and Geffner, H. 2006. Mapping conformant plan-
ning into SAT through compilation and projection. Lecture Notes
in Computer Science 4177:311-320.

Palacios, H.; Bonet, B.; Darwiche, A.; and Geftner, H. 2005.
Pruning conformant plans by counting models on compiled d-
DNNF representations. In Proceedings of the 15th International
Conference on Automated Planning and Scheduling, 141-150.

R Development Core Team. 2006. R: A Language and Envi-
ronment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-07-0.

Ranjan, R. K.; Aziz, A.; Brayton, R. K.; Plessier, B.; and Pix-
ley, C. 1995. Efficient BDD algorithms for FSM synthesis and
verification. International Workshop on Logic Synthesis.

Siddiqi, S., and Huang, J. 2008. Probabilistic sequential diagno-
sis by compilation. Tenth International Symposium on Artificial
Intelligence and Mathematics.

Thurley, M. 2006. sharpSAT — counting models with advanced
component caching and implicit BCP. In Ninth International
Conference on Theory and Applications of Satisfiability.

Appendix

C2D Settings Run time (sec.) d-DNNF Size (edges)
Reduced Smooth DT Method | Solved MI MRI +/- MI MRI +/-
no no 4 275 123.93* 27.73 | 263/11 161065.71 5.25 | 180/94
no -smooth 4 275 124.45* 27.77 | 261/13 | 161065.71 5.25 | 180/94
no -smooth_all 4 275 124.66* 27.77 | 264/10 | 161065.71 5.25 | 180/94
yes no 4 275 124.67* 27.83 | 261/11 161065.71 5.25 | 180/94
yes -smooth_all 4 275 124.70* 27.83 | 263/12 | 161065.71 5.25 | 180/94
yes -smooth 4 275 124.73* 28.55 | 267/8 161065.71 5.25 | 180/94
no no 3 275 202.59* 55.78 | 255/17 | 218277.51* 9.89 | 193/81
yes -smooth_all 3 275 202.84" 56.12 | 258 /17 | 218277.51* 9.89 | 193/81
no -smooth 3 275 202.91* 56.17 | 260/15 | 218277.51* 9.89 | 193/81
yes no 3 275 203.00" 56.01 | 260 /13 | 218277.51* 9.89 | 193/81
yes -smooth 3 275 203.01~ 56.38 | 264 /10 | 218277.51* 9.89 | 193/81
no -smooth_all 3 275 203.14% 56.03 | 255/17 | 218277.51* 9.89 | 193/81
no no 1 269 116.06* 58.16 | 263/6 22609.21 1.83 | 143/123
yes -smooth 0 269 118.96* 73.78 | 265/4 -4114.50 1.30 | 149/118
no -smooth_all 1 268 119.35* 63.46 | 263/4 6818.32 1.90 | 144/121
no -smooth 0 268 121.74* 78.76 | 262/6 21295.75 | 2.96 | 135/130
no -smooth 1 268 123.02* 79.46 | 263/5 -3655.66 1.39 | 142/124
no no 0 268 127.16* 89.87 | 264/4 24688.42 1.34 | 134/131
yes no 0 268 129.17* 87.48 | 264/4 41385.28 1.46 | 137/129
yes no 1 267 123.31* 59.56 | 261/6 11253.97 1.97 | 147 /117
yes -smooth 1 267 126.37* 7790 | 262/5 -2894.02 1.35 | 145/120
yes -smooth_all 0 267 127.49* 92.81 | 263/4 41530.84 145 | 139/125
yes -smooth_all 1 267 132.15* 86.59 | 262/5 -1790.32 1.35 | 140/124
no -smooth_all 0 266 132.97* 98.88 | 262/4 -863.08 141 | 135/127
no no 2 242 401.27* | 609.56 | 234/6 | 552529.57* | 73.26 | 225/16
no -smooth_all 2 242 401.86* | 613.84 | 238/4 | 552529.57* | 73.26 | 225/16
yes no 2 242 401.94* | 613.19 | 238/4 | 552529.57* | 73.26 | 225/16
no -smooth 2 242 401.99* | 612.80 | 238/4 | 552529.57* | 73.26 | 225/16
yes -smooth_all 2 242 402.00* | 612.91 | 238/4 | 552529.57* | 73.26 | 225/16
yes -smooth 2 242 402.13* | 614.52 | 237/5 | 552529.57* | 73.26 | 225/16

Here we present results for many of the C2D settings: Reduce indicates if the -reduce option was used; Smooth indicates if -
smooth or -smooth_all (or neither) was used; DT Method indicates what decomposition tree method was used (via -dt_method).
The Solved column indicates the number of problems (out of all 300) that C2D was able to solve. The last six columns
correspond to the calculations made in the last six columns of Table 1. The results are for all domains, and thus correspond to
the final row in Table 1.

